Skip to main content
Log in

Stability of Monolithic Gravity Dam Located on Heterogeneous Rock Foundation

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present study, the structural stability and safety of gravity dams located on inhomogeneous rock foundations is evaluated under the static loads of self-weight, hydrostatic, and uplift pressures using the overstress and the sliding safety indices. Considering Pine Flat gravity dam as case study, its 2D monolith together with its foundation is numerically analyzed using the finite element method. The spatial configuration of the foundation is changed in two main groups by inserting one or two single large joint(s)/fault plane(s). The coupled stress–seepage problem is solved to accurately obtain the seepage regime and the uplift forces. The effects of the position of the foundation joint(s), mechanical and permeability properties of the rock, and the presence of the uplift forces on the safety and stability of the dam are assessed through a detailed parametric study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. USACE: Gravity dam design. US Army Corps of Engineers. EM 1110-2-2200. Washington, DC (1995)

  2. Chopra, A.K.; Chakrabarti, P.; Gupta, S.: Earthquake response of concrete gravity dams including hydrodynamic and foundation interaction effects. Report No. UCB/EERC-80/01. University of California, Berkeley (1980)

  3. Sun, G.H.; Zheng, H.; Liu, D.F.: A three-dimensional procedure for evaluating the stability of gravity dams against deep slide in the foundation. Int. J. Rock Mech. Min. Sci. 48, 421–426 (2011)

    Article  Google Scholar 

  4. Zhang, L.; Wang, D.; Zhang, H.; Wang, W.: Stability analysis of gravity dams on sloping layered rock foundation against deep slide. In: 11th ASCE Aerospace Division International Conference, Long Beach, CA, USA (2008)

  5. John, K.W.: An approach to rock mechanics. J. Soil Mech. Found. Div. 88(4), 1–30 (1962)

    Google Scholar 

  6. Rogers, J.D.: Lessons learned from the St. Francis dam failure. Geo-Strata. Reston: ASCE; 7–14 (2006)

  7. Londe, P.; Vigier, G.; Vormeringer, R.: Stability of rock slopes: a three-dimensional study. J. Soil Mech. Found. Div. ASCE 95(SM1), 235–262 (1969)

    Google Scholar 

  8. Hosseinzadeh, A.; Nobarinasab, M.; Soroush, A.; Lotfi, V.: Coupled stress–seepage analysis of Karun III concrete arch dam. Proc. Inst. Civ. Eng. Geotech. Eng. GE5, 483–501 (2013)

    Article  Google Scholar 

  9. Ukhov, S.B.; Semenov, V.V.; Kotov, P.B.; Shevarina, N.N.: Analysis of the interaction of a concrete dam and nonhomogeneous joint-block rock foundation. Transl. Gidrotechnicheskoe Stroitel’stvo 9, 27–32 (1978)

    Google Scholar 

  10. Lin, G.; Du, J.; Hu, Z.: Earthquake analysis of arch and gravity dams including the effects of foundation inhomogeneity. Front. Archit. Civ. Eng. China 1, 41–50 (2007)

    Article  Google Scholar 

  11. Fenves, G.; Chopra, A.K.: Simplified earthquake analysis of concrete gravity dams: combined hydrodynamic and foundation interaction effects. J. Eng. Mech. 111, 736–756 (1985)

    Article  Google Scholar 

  12. Alembagheri, M.; Ghaemian, M.: Incremental dynamic analysis of concrete gravity dams including base and lift joints. Earthq. Eng. Eng. Vib. 12, 119–134 (2013)

    Article  Google Scholar 

  13. Roberts, A.: A model study of rock foundation problems underneath a concrete gravity dam. Eng. Geol. 1, 349–372 (1966)

    Article  Google Scholar 

  14. Ukhov, S.B.; Semenov, V.V.: Calculation of displacements and stresses in anisotropic rocks by the finite element method. Gidrotechnicheskoe Stroitel’stvo 2, 146–154 (1973)

    Google Scholar 

  15. Kotov, P.B.: Stressed state and Bearing capacity of anchors embedded in rocks. Gidrotechnicheskoe Stroitel’stvo 12, 1167–1170 (1975)

    Google Scholar 

  16. Semenov, V.V.; Shevarina, N.N.: Application of the finite element method in calculating seepage in the foundations of hydraulic structures. Gidrotechnicheskoe Stroitel’stvo 4, 326–331 (1976)

    Google Scholar 

  17. Chen, Y.; Zhang, L.; Yang, G.; Dong, J.; Chen, J.: Anti-sliding stability of a gravity dam on complicated foundation with multiple structural planes. Int. J. Rock Mech. Min. Sci. 55, 151–156 (2012)

    Google Scholar 

  18. Kovari, K.; Peter, G.: Continuous strain monitoring in the rock foundation of a large gravity dam. Rock Mech. Rock Eng. 16, 157–171 (1983)

    Article  Google Scholar 

  19. Chen, S.; Qiang, S.; Shahrour, I.; Egger, P.: Composite element analysis of gravity dam on a complicated rock foundation. Int. J. Geomech. 8, 275–284 (2008)

    Article  Google Scholar 

  20. Ferdousi, A.; Gharabaghi, A.R.; Ahmadi, M.T.; Chenaghlou, M.R.; Emami Tabrizi, M.: Earthquake analysis of arch dams including the effects of foundation discontinuities and proper boundary conditions journal of theoretical and applied mechanics. J. Theor. Appl. Mech. 52, 579–594 (2014)

    Google Scholar 

  21. Alonso, E.E.; Pinyol, N.M.; Pineda, J.: Foundation of a Gravity dam on layered soft rock: shear strength of bedding planes in laboratory and large “in situ” tests. Geotech. Geol. Eng. 32, 1439–1450 (2014)

    Article  Google Scholar 

  22. Goldgruber, M.; Shahriari, S.; Zenz, G.: Dynamic sliding analysis of a gravity dam with fluid-structure-foundation interaction using finite elements and Newmark’s sliding block analysis. Rock Mech. Rock Eng. 48, 2405–2419 (2015)

    Article  Google Scholar 

  23. Guo, L.; Li, T.; Lu, S.; Guo, Y.: Deep sliding stability analysis of gravity dam based on fem strength reduction. Adv. Mater. Res. 243–249, 4608–4613 (2011)

    Article  Google Scholar 

  24. Pausz, S.; Nowotny, H.; Jung, G.: Rock mass classification and geotechnical model for the foundation of a RCC gravity dam. Geomech. Tunn. 8, 436–440 (2015)

    Article  Google Scholar 

  25. Xuhua, R.; Jiaqing, S.; Nenghui, B.; Hongyun, R.: Stability analysis of concrete gravity dam on complicated foundation with multiple slide planes. Water Sci. Eng. 1, 65–72 (2008)

    Google Scholar 

  26. He, W.; He, Y.: Stability analysis on Tingzikou gravity dam along deep-seated weak planes during earthquake. Front. Struct. Civ. Eng. 6, 69–75 (2012)

    Google Scholar 

  27. Leclerc, M.; Leger, P.; Tinawi, R.: Computer aided stability analysis of gravity dam-CADAM. Adv. Eng. Softw. 34, 403–420 (2003)

    Article  Google Scholar 

  28. Guo, H.; Xu, W.; Wu, Z.: Study on coupling influences of concrete dam foundation seepage, stress, and creep on structure behaviors of dam body. Elsevier Geo-Eng. Book Ser. 2, 753–758 (2004)

    Article  Google Scholar 

  29. Gu, C.; Su, H.; Zhou, H.: Study on coupling model of seepage-field and stress-field for rolled control concrete dam. Appl. Math. Mech. (English Edition) 26, 355–363 (2005)

    Article  MATH  Google Scholar 

  30. Chen, S.; Xu, M.; Shahrour, I.; Egger, P.: Analysis of arch dams using coupled trial load and block element methods. J. Geotech. Geoenviron. Eng. 129, 977–986 (2003)

    Article  Google Scholar 

  31. Hohberg, J.M.: A joint element for the nonlinear dynamics of arch dams. Ph.D. thesis, Institute of Structural Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland (1992)

  32. Lee, J.S.; Pande, G.N.: A new joint element for the analysis of media having discrete discontinuities. Mech. Cohesive-Frict. Mater. 4, 487–504 (1999)

    Article  Google Scholar 

  33. Samadhiya, N.K.; Viladkar, M.N.; Al-Obaydi, M.: Three dimensional joint/interface element for rough undulating major discontinuities in rock masses. Int. J. Geomech. 8, 327–335 (2008)

    Article  Google Scholar 

  34. Duarte Azevedo, I.C.; Vaz, L.E.; Vargas, E.A.: A numerical procedure for the analysis of the hydromechanical coupling in fractured rock masses. Int. J. Numer. Anal. Methods Geomech. 22, 867–901 (1998)

    Article  MATH  Google Scholar 

  35. Junrui, C.; Yanqing, W.; Shouyi, L.: Analysis of coupled seepage and stress fields in rock mass around the Xiaowan arch dam. Commun. Numer. Methods Eng. 20, 607–617 (2004)

    Article  MATH  Google Scholar 

  36. Chen, S.H.; Xue, L.L.; Shahrour, I.: Composite element method for the seepage analysis of rock masses containing fractures and drainage holes. Int. J. Rock Mech. Min. Sci. 47, 762–770 (2010)

    Article  Google Scholar 

  37. FERC. Engineering guidelines for evaluation of hydropower projects-Gravity Dams. Federal Energy Regulatory Commission, Office of Energy Projects, Division of Dam Safety and Inspections, Washington DC, USA (2000)

  38. Joshi, S.G.; Gupta, I.D.; Murnal, P.B.: Analyzing the effect of foundation inhomogeneity on the seismic response of gravity dams. Int. J. Civ. Struct. Eng. 6(1), 11 (2015)

    Google Scholar 

  39. Heirany, Z.; Ghaemian, M.: The effect of foundation’s modulus of elasticity on concrete gravity dam’s behavior. Indian J. Sci. Technol. 5(5), 2738–2740 (2012)

    Google Scholar 

  40. Lokke, A.; Chopra, A.K.: Response spectrum analysis of concrete gravity dams including dam-water-foundation interaction. J. Struct. Eng. 141, 04014202 (2015)

  41. Hasani, H.; Arshadnejad, S.; Khodadadi, H.; Goodarzi, N.: 3D numerical modeling of a couple of power intake shafts and head race tunnels at vicinity of a rock slope in Siah Bishe pumped storage dam, north of Iran. J. Appl. Sci. 8, 4294–302 (2008)

    Article  Google Scholar 

  42. Babayan, A.G.: Finite-element method for combined calculations of the seepage regime and static performance of a “concrete-dam/rock-bed” system. Hydrotech. Constr. 26(4), 205–219 (1992)

    Article  Google Scholar 

  43. Zhou, W.; Chang, X.L.; Zhou, C.B.: Failure analysis of high-concrete gravity dam based on strength reserve factor method. Comput. Geotech. 35, 627–36 (2008)

    Article  Google Scholar 

  44. Liu, J.; Feng, X.T.; Ding, X.L.: Stability assessment of the Three-Gorges Dam foundation using physical and numerical modeling—Part II: numerical modeling. Int. J. Rock Mech. Min. Sci. 40, 633–652 (2003)

    Article  Google Scholar 

  45. Alembagheri, M.: Dynamics of submerged intake towers including interaction with dam and foundation. Soil Dyn. Earthq. Eng. 84, 108–119 (2016)

    Article  Google Scholar 

  46. Bretas, E.M.; Leger, P.; Lemos, J.V.: 3D stability analysis of gravity dams on sloped rock foundations using the limit equilibrium method. Comput. Geotech. 44, 147–156 (2012)

    Article  Google Scholar 

  47. Alembagheri, M.; Ghaemian, M.: Seismic performance evaluation of a jointed arch dam. Struct. Infrastruct. Eng. 12, 256–274 (2016)

    Article  Google Scholar 

  48. Zienkiewicz, O.C.; Taylor, R.L.: The finite element method. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

  49. Abaqus analysis user’s manual. Version 6.11. Dassault Systems Inc. (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Alembagheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganji, H.T., Alembagheri, M. Stability of Monolithic Gravity Dam Located on Heterogeneous Rock Foundation. Arab J Sci Eng 43, 1777–1793 (2018). https://doi.org/10.1007/s13369-017-2755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2755-0

Keywords

Navigation