Advertisement

Arabian Journal for Science and Engineering

, Volume 42, Issue 12, pp 5201–5209 | Cite as

Efficient and Reliable Modulation Classification for MIMO Systems

  • Mohammad Rida Bahloul
  • Mohd Zuki Yusoff
  • Abdel-Haleem Abdel-Aty
  • Mohd Naufal Saad
  • Anis Laouiti
Research Article - Electrical Engineering
  • 57 Downloads

Abstract

In this paper, an efficient and reliable feature-fusion-based modulation classification (MC) algorithm for multiple-input multiple-output (MIMO) systems is developed. It uses two higher-order cumulants of the transmitted signal streams to classify a broad set of modulation types with no prior knowledge of the channel state information. We address the problem of the soft-decision fusion for the feature-fusion-based MC algorithms for MIMO systems and introduce an optimal soft-decision fusion scheme to find the classification result. The complexity order of the proposed MC algorithm is studied in detail to demonstrate its low computation cost, and its performance is validated extensively by simulation results to show its practical effectiveness.

Keywords

5G Modulation classification (MC) multiple-input multiple-output (MIMO) Next-generation communications Soft-decision fusion Higher-order statistics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bahloul, M.R.; Yusoff, M.Z.; Abdel-Aty, A.; Saad, M.N.; Al-Jemeli, M.: Modulation classification for MIMO systems: state of the art and research directions. Chaos Solitons Fractals 89, 497–505 (2016)CrossRefGoogle Scholar
  2. 2.
    Tsakmalis, A.; Chatzinotas, S.; Ottersten, B.: Modulation and coding classification for adaptive power control in 5G cognitive communications. In: Proceedings of the IEEE 14th International Workshop Signal Processing Advances in Wireless Communications (SPAWC), pp. 234–238 (2014)Google Scholar
  3. 3.
    Choqueuse, V.; Azou, S.; Yao, K.; Collin, L.; Burel, G.: Blind modulation recognition for MIMO systems. MTA Rev. XIX, 183–196 (2009)Google Scholar
  4. 4.
    Bahloul, M.R.; Yusoff, M.Z.; Abdel-Aty, A.; Saad, M.N.: An efficient likelihood-based modulation classification algorithm for multiple-input multiple-output systems. J. Comput. Theor. Nanosci. 13, 7879–7885 (2016)CrossRefGoogle Scholar
  5. 5.
    Hassan, K.; Nzéza, C.; Berbineau, M.; Hamouda, W.; Dayoub, I.: Blind modulation identification for MIMO systems. In: Proceedings of the IEEE Global Telecommunications Conferences (GLOBECOM), pp. 1–5 (2010)Google Scholar
  6. 6.
    Chikha, W.; Dayoub, I.; Hamouda, W.; Attia, R.: Modulation recognition for MIMO relaying broadcast channels with direct link. IEEE Wirel. Commun. Lett. 3, 50–53 (2014)CrossRefGoogle Scholar
  7. 7.
    Hassan, K.; Dayoub, I.; Hamouda, W.; Nzéza, C.; Berbineau, M.: Blind digital modulation identification for spatially correlated MIMO systems. IEEE Trans. Wirel. Commun. 11, 683–693 (2012)CrossRefGoogle Scholar
  8. 8.
    Bahloul, M.R.; Yusoff, M.Z.; Saad, M.N.: Robust and reliable modulation classification for MIMO systems Appl. Math. Inf. Sci. 9, 2513–2519 (2015)Google Scholar
  9. 9.
    Mühlhaus, M. S.; Öner, M.; Dobre, O.A.; Jäkel, H.U.; Jondral, F.K.: Automatic modulation classification for MIMO systems using fourth-order cumulants. In: Proceedings of the IEEE Vehicular Technology Conference (VTC Fall), pp. 1–5 (2012)Google Scholar
  10. 10.
    Mühlhaus, M.S.; Öner, M.; Dobre, O.A.; Jondral, F.K.: A low complexity modulation classification algorithm for MIMO systems. IEEE Commun. Lett. 17, 1881–1884 (2013)CrossRefGoogle Scholar
  11. 11.
    Bahloul, M.R.; Yusoff, M.Z.; Saad, M.N.: Efficient and low complexity modulation classification algorithm for MIMO systems Res. J. Appl. Sci. Eng. Technol. 9, 58–64 (2015)Google Scholar
  12. 12.
    Cardoso, J.-F.: High-order contrasts for independent component analysis. Neural Comput. 11, 157–192 (1999)CrossRefGoogle Scholar
  13. 13.
    Gao, J., Zhu, X., Nandi, A. K.: Linear pre-coding aided blind equalization with independent component analysis in MIMO OFDM systems. In: Proceedings of the 16th European Signal Processing Conference (2008)Google Scholar
  14. 14.
    Eraslan, E.; Daneshrad, B.; Lou, C.Y.: Performance indicator for MIMO MMSE receivers in the presence of channel estimation error. IEEE Wirel. Commun. Lett. 2, 211–214 (2013)CrossRefGoogle Scholar
  15. 15.
    Eraslan, E.; Wang, C.; Daneshrad, B.: Practical energy-aware link adaptation for MIMO-OFDM systems. IEEE Trans. Wirel. Commun. 99, 1–13 (2014)Google Scholar
  16. 16.
    Alharbi, H.; Shoaib, M.; Alshebeili, S. A.; Fahad, A.: An overview of feature-based methods for digital modulation classification. In: Proceedings of the 1st International Conference Communications, Signal Processing and their Applications (ICCSPA), pp. 1–6 (2013)Google Scholar
  17. 17.
    Ghosh, A., Hamouda, W., Dayoub, I.: Blind primary user identification in MIMO cognitive networks. In: Proceedings of the IEEE International Conference on Communications (ICC), pp. 4546–4550 (2013)Google Scholar
  18. 18.
    Gao, J.; Zhu, X.; Nandi, A.K.: Non-redundant precoding and PAPR reduction in MIMO OFDM systems with ICA based blind equalization. IEEE Trans. Wirel. Commun. 8, 3038–3049 (2009)CrossRefGoogle Scholar
  19. 19.
    Burg, A.: VLSI circuits for MIMO communication systems. Ph.D. dissertation, Zurich, Switzerland (2006)Google Scholar
  20. 20.
    Xu, L.; Krzyzak, A.; Suen, C.Y.: Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Syst. Man Cybern. 22, 418–435 (1992)CrossRefGoogle Scholar
  21. 21.
    Mobasseri, B.G.: Digital modulation classification using constellation shape. Signal Process. 80, 251–277 (2000)CrossRefMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.Department of Electrical and Electronic Engineering, Centre for Intelligent Signal and Imaging Research (CISIR)Universiti Teknologi PETRONASSeri IskandarMalaysia
  2. 2.Physics Department, Faculty of ScienceAl-Azhar UniversityAssiutEgypt
  3. 3.Department of Wireless Networks and Multimedia ServicesTelecom Sud ParisParisFrance

Personalised recommendations