Skip to main content
Log in

Contribution to the Numerical Modelling of the Spalling Phenomenon: Case of a Reinforced Concrete Beams

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The paper presents a numerical study of reinforced concrete (RC) beams in fire, in which spalling is taken into account in a simplified manner and its effects on the structural response are investigated. Finite element simulations are conducted using the software SAFIR. The criteria to determine the onset of spalling are the temperature reached in the finite element: concrete layers are removed when their temperature reaches \(400\,{^{\circ }}\hbox {C}\). The effect of spalling on the temperature distribution inside the beam section and on the time of failure is discussed. Different configurations are studied, in terms of extent of spalling along the beam and type of supports. Further, it is also shown that the extent of spalling has significant influence on the fire resistance of RC beams and that this is by reducing the failure time and/or by reducing the yield strength and tangent modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kodur, V.R.: Guidelines for fire resistance design of high strength concrete columns. J. Fire Prot. Eng. 15(2), 93–106 (2005)

    Article  Google Scholar 

  2. Dwaikat, M.B.; Kodur, V.K.R.: Hydrothermal model for predicting fire-induced spalling in concrete structural systems M.B. Fire Saf. J. 44, 425–434 (2009). doi:10.1016/j.firesaf.2008.09.001

    Article  Google Scholar 

  3. Akhtaruzzaman, A.A.; Sullivan, P.J.E.: Explosive spalling of concrete exposed to high temperature. Imperial college of Science and technology. Concrete Structures and Technology. Research report CSTR 70/2, London (1970)

  4. Sanjayan, G.; Stocks, L.J.: Spalling of high strength silica fume concrete in fire. ACI Mater. J. 90(2), 170–173 (1993)

    Google Scholar 

  5. Kodur, V.K.R.; Phan, L.T.: Critical factors governing the fire performance of high strength concrete systems. Fire Saf. J. 42, 482–488 (2007). doi:10.1016/j.firesat.2006.10.006

    Article  Google Scholar 

  6. Phan, L.T.: Fire performance of high-strength concrete. A report of the state-of the-art. National Institute of Standards and Technology. Gaithersburg. MD, p. 105 (1996)

  7. EC2, Eurocode 2: EN 1992-1-2. Design of concrete structures—part 1–2: general rules—structural fire design. CEN—European Committee for Standardization. Brussels (2004)

  8. EC4, Eurocode 4: EN 1994-1-2. Design of composite steel and concrete structures—part 1–2: general rules-structural fire design. CEN-European Committee for Standardization. Brussels (2004)

  9. Khoury, G.; Majorana, C.: Effect of Heat on Concrete. International Centre for Mechanical Sciences, Udine (2003)

    Google Scholar 

  10. Breunese, A.J.; Fellinger, J.H.H.: Spalling of concrete. An overview of ongoing research in the Netherlands. Workshop structures in fire, Ottawa (2004)

  11. Zeiml, M.; Lackner, R.: Experimental investigation on spalling mechanisms in heated concrete. In: Proceedings: IA-FraMCoS International Association of Fracture Mechanics for Concrete and Concrete Structures. FraMCos-6. Catania, Italy (2007)

  12. Gao, W.Y.; Dai, Jian-Guo; J.G, Teng; G.M., Chen: Finite element modeling of reinforced concrete beams exposed to fire. Eng. Struct. 52, 488–501 (2013). doi:10.1016/j.engstruct.2013.03.017

    Article  Google Scholar 

  13. Wolfram, E.H.K.: Explosive spalling of concrete in fire. Ph.D. Dissertation. Aachen University, Gifhorn, Germany (2014)

  14. Zeiml, M.; Lackner, R.; Herbert, A.M.: Experimental insight into spalling behavior of concrete tunnel linings under fire loading. Acta Geotech. 3(4), 295–308 (2008). doi:10.1007/s11440-008-0069-9

    Article  Google Scholar 

  15. Kodur, V.K.R.; Dwaikat, M.B.: Fire induced spalling in high strength concrete beams. Fire Technol. 46, 251–274 (2010). doi:10.1007/s10694-009-0088-6

    Article  Google Scholar 

  16. Yaqub, M.; Bailey, C.G.; Nedwell, P.; Khan, Q.U.Z.; Javed, I.: Strength and stiffness of post-heated columns repaired repaired with ferrocement and fibre reinforced polymer jackets. Constr. Build. Mater. 44(1), 200–211 (2013). doi:10.1016/j.compositesb.2012.05.041

    Google Scholar 

  17. Kalifa, P.; Menneteau, F.; Quenard, D.: Spalling and pore pressure in HPC at high temperatures. Cem. Concr. Res. 30(12), 1915–1927 (2000)

    Article  Google Scholar 

  18. Caroline, D.S.: Étude hydro-mécanique et thermo-mécanique du béton-Influence des gradients et des incompatibilités de déformation. Thèse de Doctorat école normale supérieure de Cachan (2007)

  19. LCPC.: Présentation des techniques de diagnostic de l’état d’un béton soumis à un incendie. Laboratoire Central des Ponts et Chaussées. Décembre (2005)

  20. Marcus, V.G.M.; Prosper, P.; Noumowé, N.; Anne, L.B.; Sophie, O.: Contribution to the explanation of the spalling of small specimen without any mechanical restraint exposed to high temperature. Nucl. Eng. Des. 240(10), 2655–2663 (2010). doi:10.1016/j.nucengdes.2010.04.041

    Article  Google Scholar 

  21. Santos, S.O.; Rodrigues, J.P.C.; Toledo, R.; Velasco, R.V.: Compressive behaviour at high temperatures of fibre reinforced concretes. Acta Polytech. J. Adv. Eng. 49(1), 29–33 (2009)

    Google Scholar 

  22. Nguyen, V.T.: Comportement des bétons ordinaire et à hautes performances soumis à haute température : application à des éprouvettes de grandes dimensions. Thèse de Doctorat. Université de cergy-pontoise, Juillet (2013)

  23. Geert, D.S.: Damage to concrete structures. CRC Press September (2012)

  24. Franssen, J.M.; Hanus, F.; Dotreppe, J.C.: Numerical evaluation of the fire behaviour of a concrete tunnel integrating. The effects of spalling. Workshop: fire design of concrete structures- from materials modeling to structural performance. Coimbra, Portugal (2007)

  25. Deeny, S.; Stratford, T.; Dhakal, R.; Moss, P.; Buchanan, A.: Spalling of concrete implication for structural performance in fire. In: Proceedings of the International Conference Applications of Structural Fire Engineering, pp. 202–207. The University of Edinburgh, Prague, Czech Republic (2009)

  26. Minh, T.P.: Modélisation explicite de l’écaillage sous incendie du béton. Approche thermo-hydro-mécanique avec des conditions aux limites évolutives dimensions. Thèse de Doctorat. Université paris-est, France (2012)

  27. Khoury, G.A.; Anderberg, Y.: Concrete spalling. Rev. Fire Saf. Des. 60, 5–12 (2000)

    Google Scholar 

  28. Gaweska, I.H.: Thermal behavior of high performance concretes at high temperature—evolution of mechanical properties. Doctorate Thesis. Ecole Nationale des Ponts et Chaussées et l’Ecole Polytechnique de Cracovie (2004)

  29. Haniche, R.: Contribution à l’étude des bétons portés en température/Évolution des propriétés de transfert/Étude de l’éclatement. INSA, Lyon (2011)

    Google Scholar 

  30. Fletcher, I.A.; Welch, S.; Torero, J.L.; Carvel, R.O.; Usmani, A.: The behaviour of concrete structures in fire. J. Therm. Sci. 11(2), 37–52 (2007). doi:10.2298/TSCI0702037F

    Article  Google Scholar 

  31. Noumowé, A.: Effet de hautes températures \((20-6000\;^{\circ }\text{C})\) sur le béton. Cas particulier du béton à hautes performances”, Thèse de Doctorat, INSA, Lyon (1995)

  32. Toumi, B.: Etude de l’influence des hautes températures sur le comportement du béton. Thèse de Doctorat, Université mentouri Constantine, Algérie (2013)

  33. Faris, A.; Nadjai, A.; Silcock, G.; Abu-Tair, A.: Outcomes of a major research on fire resistance of concrete columns. Fire Saf. J. 39, 433–445 (2004). doi:10.1016/j.firesaf.2004.02.004

    Article  Google Scholar 

  34. EC1, Eurocode 1.: EN 1991-1-2. Actions on structures—part 1–2: general actions—actions on structures exposed to fire. CEN, Brussels (2003)

  35. Franssen, J.M.: SAFIR. A thermal/structural program modelling structures under fire. Eng. J. A.I.S.C 42(3), 143–158 (2005)

    Google Scholar 

  36. Jeremy, J.C.: Computer simulation of hollowcore concrete flooring systems exposed to fire. Thesis Doctorate, University of Canterbury, New Zealand (2007)

  37. EC3, Eurocode 3.: EN 1993-1-2 (2005). Design of steel structures—part 1–2: general rules—structural fire design. CEN, Brussels (2005)

  38. ASTM E119-00.: Stand. Meth. F. T. Buil. Const. Mater., Am. Societ. Test. Mater., West Consh., PA, USA (2007)

  39. Franssen, J.M.: Contributions à la modélisation des incendies et de leurs effets sur les bâtiments. Post doctoral thesis, Agrégation de l’enseignement supérieur. Université de Liège, Belgique (1997)

  40. Lim, L.; Buchanan, A.H.; Moss, P.J.: Restraint of fire-exposed concrete floor systems. Fire Mater. 28(2–4), 95–125 (2004). doi:10.1002/fam.854

    Article  Google Scholar 

  41. Maraveas, C.; Vrakas, A.A.: Design of concrete tunnel linings for fire safety. Struct. Eng. Int. 24(3), 319–329 (2014). doi:10.2749/101686614X13830790993041

    Article  Google Scholar 

  42. Bernhart, D.: The effect of support conditions on the fire resistance of a reinforced concrete beam. Diploma Thesis. University of Karlsruhe. Germany and University of Canterbury, New Zealand (2004)

  43. Linus, C.S.L.: Membrane action in fire exposed concrete floor systems. Doctoral Thesis of Philosophy, University of Canterbury Christchurch, New Zealand (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cherif Guergah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guergah, C., Dimia, M.S. & Guenfoud, M. Contribution to the Numerical Modelling of the Spalling Phenomenon: Case of a Reinforced Concrete Beams. Arab J Sci Eng 43, 1747–1759 (2018). https://doi.org/10.1007/s13369-017-2704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2704-y

Keywords

Navigation