Skip to main content
Log in

Numerical Analysis of the Wall Effect on Flow Around Airfoil Subjected to a Pitching Movement

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, we discuss the problem of the flow around a NACA0012 airfoil subjected to a pitching movement. The set of flow equations coupled with solid movement is solved with a finite element method using ANSYS program. Results show that our numerical model presents a good agreement in comparison with the experimental and the numerical results available in the literature. Next, the airfoil pitching movement is analyzed with the presence of the wall in the flow. It is shown that, the wall has a significant effect on aerodynamic parameters of airfoil. It found that the wall slows down the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

Length of the airfoil span (m)

c :

Airfoil chord length (m)

CD:

Drag coefficient

CL:

Lift coefficient

CP:

Pressure coefficient

f :

Frequency of the pitching motion \((\hbox {s}^{-1})\)

\(F_\mathrm{D}\) :

The drag force

\(F_\mathrm{L}\) :

The lift force

p :

The pressure

\(p_{\infty }\) :

The free stream static pressure

\(U_{\infty }\) :

Free stream velocity (\(\hbox {m}\,{\hbox {s}^{-1}}\))

t :

Time, (s)

k :

Reduced frequency (\(k=\frac{\pi fc}{U_\infty }\))

Re :

Reynlods number (\({Re}=\frac{\rho U_\infty c}{\mu }\))

\(\rho \) :

Fluid density \((\hbox {kg}\,\hbox {m}^{-3})\)

\(\alpha \) :

Mean angle of attack (deg)

\(\mu \) :

Fluid dynamic viscosity(Pa s)

References

  1. Lee, T.; Gerontakos, P.: Investigation of flow over an oscillating airfoil. J. Fluid Mech. 512, 313–341 (2004)

    Article  MATH  Google Scholar 

  2. Jung, Y.W.; Park, S.O.: Vortex-shedding characteristics in the wake of an oscillating airfoil at low Reynolds number. J. Fluids Struct. 20, 451–464 (2005)

    Article  Google Scholar 

  3. Fuchiwaki, M.; Tanaka, K.: Vortex structure and scale on an unsteady airfoil. JSME Int. J. 49, 1056–1063 (2006)

    Article  Google Scholar 

  4. Liu, Z.; Hyun, B.; Kim, M.; Jin, J.-Y.: Experimental and numerical study for hydrodynamic characteristics of an oscillating hydrofoil. J. Hydrodyn. 20(3), 280–287 (2008)

    Article  Google Scholar 

  5. Wang, S.; Ingham, D.B.; Ma, L.; Pourkashanian, M.; Tao, Z.: Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Comput. Fluids 39, 1529–1541 (2010)

    Article  MATH  Google Scholar 

  6. Lu, K.; Xie, Y.H.; Zhang, D.; Lan, J.B.: Numerical investigations into the asymmetric effects on the aerodynamic response of a pitching airfoil. J. Fluids Struct. 39, 76–86 (2013)

    Article  Google Scholar 

  7. Bhat, S.S.; Govardhan, R.N.: Stall flutter of NACA0012 airfoil at low Reynolds numbers. J. Fluids Struct. 41, 166–174 (2013)

  8. Koopaee, M.K.: Effect of flow regime change from subsonic to transonic on the air loads of an oscillating airfoil. J. Fluids Struct. 50, 312–328 (2014)

    Article  Google Scholar 

  9. Tseng, C.-C.; Cheng, Y.-E.: Numerical investigations of the vortex interactions for a flow over a pitching foil at different stages. J. Fluids Struct. 58, 291–318 (2015)

  10. Zhao, G.; Zhao, Q.: Dynamic stall control optimization of rotor airfoil via variable droop leading-edge. Aerosp. Sci. Technol. 43, 406–414 (2015)

    Article  Google Scholar 

  11. Tian, W.; Bodling, A.; Liu, H.; Wu, J.C.; He, G.; Hu, H.: An experimental study of the effects of pitch-pivot-point location on the propulsion performance of a pitching airfoil. J. Fluids Struct. 60, 130–142 (2016)

    Article  Google Scholar 

  12. Bos, F.M.; Lentink, D.; van Oudheusden, B.W.; Bijl, H.: Influence of wing kinematics on aerodynamic performance in hovering insect flight. J. Fluid Mech. 594, 341–368 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilarranz, J.L.; Traub, L.W.; Rediniotis, O.K.: A new class of synthetic jet actuators—part II: application to flow separation control. ASME J. Fluids Eng. 127, 377–387 (2005)

    Article  Google Scholar 

  14. Zhang, L.; Li, X.; Yang, K.; Xue, D.: Effects of vortex generators on aerodynamic performance of thick wind turbine airfoils. J. Wind Eng. Ind. Aerodyn. 156, 84–92 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farouk Ziane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziane, F., Abdellah El-Hadj, A. Numerical Analysis of the Wall Effect on Flow Around Airfoil Subjected to a Pitching Movement. Arab J Sci Eng 43, 1061–1069 (2018). https://doi.org/10.1007/s13369-017-2701-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2701-1

Keywords

Navigation