Skip to main content

Advertisement

Log in

Two-Phase Closed-Loop Thermosyphon Solar Water Heater with Porous Wick Structure: Performance and Start-Up Time

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Two-phase closed-loop thermosyphons (TPCLTs) are highly efficient heat transfer devices capable of transporting thermal energy over long distances without the need for other mechanical forces, such as pumPWS. This makes TPCLTs particularly suitable for applications involving solar water heaters. Our objective in this work was to increase the performance of TPCLT solar water heaters by using an evaporator with a porous wick structure (PWS) to achieve a low heat transfer coefficient. Experiments were conducted under three conditions: (1) 40% fill ratio using an evaporator without a PWS, (2) 60% fill ratio using an evaporator without a PWS, (3) 60% fill ratio using an evaporator with a PWS. Our results demonstrate that employing a PWS within the evaporator can enhance efficiency by 12.7% and decrease start-up time by 26.5% under low heating power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({C}_{{p}}\) :

Heat capacity of water (J/g K)

m :

Water quantity in the tank (g)

P :

Power supply output power (W)

Q :

Energy (J)

T :

Temperature (\({^{\circ }}\hbox {C}\))

V \(^{+}\) :

Filling ratio

V :

Volume \((\hbox {mm}^{3})\)

\({\eta }_{\mathrm{th}}\) :

Efficiency

filling:

Inventory of working fluid used to charge the loop

in:

Total input power

stored:

Thermal energy in water tank

t1:

Loop start time

t2:

End of data recording

total:

Total volume of the loop

w,t :

Average temperature of water tank at time t

References

  1. Ma, B.; Song, G.; Smardon, R.C.; Chen, J.: Diffusion of solar water heaters in regional China: economic feasibility and policy effectiveness evaluation. Energy Policy 72, 23–34 (2014)

    Article  Google Scholar 

  2. Gautam, A.; Chamoli, S.; Kumar, A.; Singh, S.: A review on technical improvements, economic feasibility and world scenario of solar water heating system. Renew. Sustain. Energy Rev. 68, 541–562 (2017)

    Article  Google Scholar 

  3. Naspolini, H.F.; Rüther, R.: Assessing the technical and economic viability of low-cost domestic solar hot water systems (DSHWS) in low-income residential dwellings in Brazil. Renew. Energy 48, 92–99 (2012)

    Article  Google Scholar 

  4. Nikoofard, S.; Ugursal, V.I.; Beausoleil-Morrison, I.: An investigation of the technoeconomic feasibility of solar domestic hot water heating for the Canadian housing stock. Sol. Energy 101, 308–320 (2014)

    Article  Google Scholar 

  5. Chen, B.R.; Chang, Y.W.; Lee, W.S.; Chen, S.L.: Long-term thermal performance of a two-phase thermosyphon solar water heater. J. Sol. Energy 83, 1048–1055 (2009)

    Article  Google Scholar 

  6. Samanci, A.; Berber, A.: Experimental investigation of single-phase and two-phase closed thermosyphon solar water heater systems. Sci. Res. Essays 64, 688–693 (2011)

    Google Scholar 

  7. Husseina, H.M.S.; Mohamada, M.A.; El-Asfourib, A.S.: Transient investigation of a thermosyphon flat-plate solar collector. Appl. Therm. Eng. 19, 789–800 (1999)

    Article  Google Scholar 

  8. Wang, Z.; Yang, W.; Qiu, F.; Zhang, X.; Zhao, X.: Solar water heating: from theory, application, marketing and research. Renew. Sustain. Energy Rev. 41, 68–84 (2015)

    Article  Google Scholar 

  9. Esen, M.; Esen, H.: Experimental investigation of a two-phase closed thermosyphon solar water heater. Sol. Energy 79, 459–468 (2005)

    Article  MATH  Google Scholar 

  10. Chen, B.-R.; Chang, Y.-W.; Lee, W.-S.; Chen, S.-L.: Long-term thermal performance of a two-phase thermosyphon solar water heater. Sol. Energy 83, 1048–1055 (2009).

  11. Zhao, X.; Wang, Z.; Tang, Q.: Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing. China. Appl. Therm. Eng. 30, 2526–2536 (2010)

    Article  Google Scholar 

  12. Ordaz-Flores, A.; García-Valladares, O.; Gómez, V.H.: Experimental characterisation and technical feasibility of a closed two-phase vs a conventional solar water heating thermosyphon. Appl. Therm. Eng. 31, 1313–1322 (2011)

    Article  Google Scholar 

  13. Ordaz-Flores, A.; García-Valladares, O.; Gómez, V.H.: Findings to improve the performance of a two-phase flat plate solar system, using acetone and methanol as working fluids. Sol. Energy 86, 1089–1098 (2012)

    Article  Google Scholar 

  14. Chien, C.C.; Kung, C.K.; Chang, C.C.; Lee, W.S.; Jwo, C.S.; Chen, S.L.: Theoretical and experimental investigations of a two-phase thermosyphon solar water heater. Energy 36, 415–423 (2011)

    Article  Google Scholar 

  15. Aung, N.Z.; Li, S.: Numerical investigation on effect of riser diameter and inclination on systems parameters in a two-phase closed loop thermosyphon solar water heater. Energy Convers. Manag. 75, 25–35 (2013)

    Article  Google Scholar 

  16. Velmurugan, K.; Christraj, W.; Kulasekharan, N.; Elango, T.: Performance study of a dual-function thermosyphon solar heating system. Arab. J. Sci. Eng. 41, 1835–1846 (2016)

    Article  Google Scholar 

  17. Zhang, D.; Li, J.; Gao, Z.; Wang, L.; Nan, J.: Thermal performance investigation of modified flat plate solar collector with dual-function. Appl. Therm. Eng. 108, 1126–1135 (2016)

    Article  Google Scholar 

  18. Mahfuz, M.H.; Anisur, M.R.; Kibria, M.A.; Saidur, R.; Metselaar, I.H.S.C.: Performance investigation of thermal energy storage system with phase change material (PCM) for solar water heating application. Int. Commun. Heat Mass Transf. 57, 132–139 (2014)

    Article  Google Scholar 

  19. Zhang, X.; Zhao, X.; Xu, J.; Yu, X.: Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system. Appl. Energy 102, 1229–1245 (2013)

    Article  Google Scholar 

  20. Zhang, X.; Zhao, X.; Shen, J.; Hu, X.; Liu, X.; Xu, J.: Design, fabrication and experimental study of a solar photovoltaic/loop-heat-pipe based heat pump system. Sol. Energy 97, 551–568 (2013)

    Article  Google Scholar 

  21. Tang, R.; Yang, Y.: Nocturnal reverse flow in water-in-glass evacuated tube solar water heaters. Energy Convers. Manag. 80, 173–177 (2014)

    Article  Google Scholar 

  22. Jafari, D.; Franco, A.; Filippeschi, S.; Di Marco, P.: Two-phase closed thermosyphons: a review of studies and solar applications. Renew. Sust. Energy Rev. 53, 575–593 (2016)

    Article  Google Scholar 

  23. Shabgard, H.; Xiao, B.; Faghri, A.; Gupta, R.; Weissman, W.: Thermal characteristics of a closed thermosyphon under various filling conditions. Int. J. Heat Mass Transf. 70, 91–102 (2014)

    Article  Google Scholar 

  24. Li, J.; Lin, F.; Niu, G.: An insert-type two-phase closed loop thermosyphon for split-type solar water heaters. Appl. Therm. Eng. 70, 441–450 (2014)

    Article  Google Scholar 

  25. Solomon, A.B.; Roshan, R.; Vincent, W.; Karthikeyan, V.K.; Asirvatham, L.G.: Heat transfer performance of an anodized two-phase closed thermosyphon with refrigerant as working fluid. Int. J. Heat Mass Transf. 82, 521–529 (2015)

    Article  Google Scholar 

  26. Payakaruk, T.; Terdtoon, P.; Ritthidech, S.: Correlations to predict heat transfer characteristics of an inclined closed two-phase thermosyphon at normal operating conditions. Appl. Therm. Eng. 20, 781–790 (2000)

    Article  Google Scholar 

  27. Zhang, T.; Pei, G.; Zhu, Q.; Ji, J.: Investigation on the optimum volume-fill ratio of a loop thermosyphon solar water-heating system. J. Sol. Energy Eng. 138, 041006 (2016). doi:10.1115/1.4033403

    Article  Google Scholar 

  28. Moffat, R.J.: Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1, 3–17 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Keng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Lin, WK. & Wang, SR. Two-Phase Closed-Loop Thermosyphon Solar Water Heater with Porous Wick Structure: Performance and Start-Up Time. Arab J Sci Eng 42, 4885–4894 (2017). https://doi.org/10.1007/s13369-017-2660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2660-6

Keywords

Navigation