Skip to main content
Log in

Early-Age Strength of Aeolian Sand-Based Cemented Backfilling Materials: Experimental Results

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Cemented paste backfill (CPB) is used extensively in underground mining operations worldwide. However, CPB technology is not widely used in China’s western eco-environment frangible area because of the sources, costs, and mechanical properties of the material. This study aims to investigate and better understand the mechanical properties of aeolian sand-based cemented backfilling with different properties (water/cement ratio, aeolian sand content, fly ash content, and Portland cement content) at early-age curing times (1, 3, 7, 28 days). Based on microstructural analyses (e.g. X-ray diffraction and SEM studies) of tested CPB materials, an experiment was designed to study the early-age strength of nine different CPB materials. The obtained results reveal that water/cement ratio, aeolian sand content, fly ash content and Portland cement content can affect the properties of CPB materials. The experimental results can help to better assess and predict the mechanical properties of aeolian sand-based cemented backfilling materials. The findings of this study have significant implications for CPB practices in China’s western eco-environment frangible area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie, H.P.; Wang, J.H.; Shen, B.H.; Liu, J.Z.; Jiang, P.F.; Zhou, H.W.; Liu, H.; Wu, G.: New idea of coal mining. Scientific mining and sustainable mining capacity. J. China Coal. Soc. 37(7), 1069–1079 (2012)

    Google Scholar 

  2. Wang, L.G.; Wang, Z.S.; Huang, J.H.; Zhou, D.L.: Prediction on the height of water-flowing fractured zone for shallow seam covered with thin bedrock and thick windblown sands. J. Min. Saf. Eng. 29(5), 607–612 (2012)

    Google Scholar 

  3. Liu, T.F.; Jiang, D.L.; Wang, Y.: Discussion on integration technology of mine water treatment for medium and small mines in west part of China. Coal. Eng. 11, 81–83 (2010)

    Google Scholar 

  4. Miao, X.X.; Pu, H.; Bai, H.B.: Principle of water-resisting key strata and its application in water-preserved mining. J. China Univ. Min. Technol. 37(1), 1–4 (2008)

    Google Scholar 

  5. Kesimal, A.; Yilmaz, E.; Ercikdi, B.; Alp, I.; Deveci, H.: Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill. Mater. Lett. 59(28), 3703–3709 (2005)

    Article  Google Scholar 

  6. Cui, L.; Fall, M.: A coupled thermo–hydro–mechanical–chemical model for underground cemented tailings backfill. Tunn. Undergr. Sp. Technol. 50(50), 396–414 (2015)

    Article  Google Scholar 

  7. Ghirian, A.; Fall, M.: Coupled thermo–hydro–mechanical–chemical behaviour of cemented paste backfill in column experiments: Part II: mechanical, chemical and microstructural processes and characteristics. Eng. Geol. 170(1), 11–23 (2014)

    Article  Google Scholar 

  8. Fall, M.; Pokharel, M.: Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill. Cem. Concr. Compos. 32(10), 819–828 (2010)

    Article  Google Scholar 

  9. Pokharel, M.; Fall, M.: Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened cemented paste backfill. Cem Concr. Compos. 38(4), 21–28 (2013)

    Article  Google Scholar 

  10. Benzaazoua, M.; Ouellet, J.; Servant, S.; Newman, P.; Verburg, R.: Cementitious backfill with high sulfur content: physical, chemical and mineralogical characterization. Cem. Concr. Res. 29(5), 719–725 (1999)

    Article  Google Scholar 

  11. Fall, M.; Benzaazoua, M.; Ouellet, S.: Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill. Miner. Eng. 18(1), 41–44 (2005)

    Article  Google Scholar 

  12. Ercikdi, B.; Cihangir, F.; Kesimal, A.; Deveci, H.; Alp, I.: Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings. J. Hazard. Mater. 168(2–3), 848–856 (2009)

    Article  Google Scholar 

  13. Deng, X.J.; Zhang, J.X.; Zhou, N.; An, T.L.; Guo, S.: The research and application of longwall-roadway cemented backfilling mining technology in extra-thick coal seam. J. Min. Saf. Eng. 31(6), 857–862 (2016)

    Google Scholar 

  14. Zhang, J.X.; Sun, Q.; Zhou, N.; Jiang, H.Q.; Germain, D.; Abro, S.: Research and application of roadway backfill coal mining technology in western coal mining area. Arab. J. Geosci. 9(10), 1–10 (2016)

    Article  Google Scholar 

  15. Nasir, O.; Fall, M.: Coupling binder hydration, temperature and compressive strength development of underground cemented paste backfill at early ages. Tunn. Undergr. Sp. Technol. 25(1), 9–20 (2010)

    Article  Google Scholar 

  16. Li, W.C.; Fall, M.: Sulphate effect on the early age strength and self-desiccation of cemented paste backfill. Constr. Build. Mater. 106, 296–304 (2016)

    Article  Google Scholar 

  17. Zhai, C.K.; Xu, L.B.; Wang, G.C.; Liu, W.D.: Analysis of trace elements in tap water of Xuzhou inhabitants. Acta Acad. Med. Xuzhou 8(2), 89–90 (1988)

    Google Scholar 

  18. Dragana, S.; Murray, G.: Apparent yield stress measurement in cemented paste backfill. Int. J. Min. Reclam. Environ. 1(4), 1–26 (2012)

    Google Scholar 

  19. Ghafari, E.; Costa, H.; Júlio, E.; Portugal, A.; Durães, L.: The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Mater. Design. 59(6), 1–9 (2014)

    Article  Google Scholar 

  20. Dong, W.; Shen, X.D.: Study on cement mortar fluidity and compressive strength by different aeolian sand dosage. Bull. Chin. Ceram. Soc. 32(9), 1900–1904 (2013)

    Google Scholar 

  21. Osman, M.A.; Atallah, A.; Schweizer, T.; Öttinger, H.C.: Particle–particle and particle–matrix interactions in calcite filled high-density polyethylene—steady shear. J. Rheol. 48(48), 1167–1184 (2004)

  22. Thomas, J.J.; Allen, A.J.; Jennings, H.M.: Structural changes to the calcium–silicate–hydrate gel phase of hydrated cement with age, drying, and resaturation. J. Am. Ceram. Soc. 91(10), 3362–3369 (2008)

  23. Siddique, R.: Properties of concrete incorporating high volumes of class F fly ash and san fibers. Cem. Concr. Res. 34(1), 37–42 (2004)

    Article  Google Scholar 

  24. Park, C.K.; Noh, M.; Park, T.: Rheological properties of cementitious materials containing mineral admixtures. Cem. Concr. Res. 35(5), 842–849 (2005)

    Article  Google Scholar 

  25. Poon, C.S.; Lam, L.; Wong, Y.L.: A study on high strength concrete prepared with large volumes of low calcium fly ash. Cem. Concr. Res. 30(3), 447–455 (2000)

    Article  Google Scholar 

  26. Sakai, E.; Miyahara, S.; Ohsawa, S.; Lee, S.H.; Daimon, M.: Hydration of fly ash cement. Cem. Concr. Res. 35(6), 1135–1140 (2005)

    Article  Google Scholar 

  27. Fall, M.; Benzaazoua, M.; Saa, E.G.: Mix proportioning of underground cemented tailings backfill. Tunn. Undergr. Sp. Technol. 23(1), 80–90 (2008)

    Article  Google Scholar 

  28. Jiang, H.Q.; Fall, M.; Cui, L.: Yield stress of cemented paste backfill in sub-zero environments: experimental results. Miner. Eng. 92, 141–150 (2016)

    Article  Google Scholar 

  29. Parra, C.; Valcuende, M.; Gómez, F.: Splitting tensile strength and modulus of elasticity of self-compacting concrete. Constr. Build. Mater. 25(1), 201–207 (2011)

    Article  Google Scholar 

  30. Nasir, O.; Fall, M.: Modeling the heat development in hydrating CPB structures. Comput. Geotech. 36(7), 1207–1218 (2009)

    Article  Google Scholar 

  31. Choi, Y.; Yuan, R.L.: Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC. Cem. Concr. Res. 35(8), 1587–1591 (2005)

    Article  Google Scholar 

  32. Zhou, Q.; Beaudoin, J.J.: Effect of applied hydrostatic stress on the hydration of Portland cement and C3S. Adv. Cem. Res. 15(1), 9–16 (2003)

    Article  Google Scholar 

  33. Ghirian, A.; Fall, M.: Coupled thermo–hydro–mechanical–chemical behaviour of cemented paste backfill in column experiments: Part II: mechanical, chemical and microstructural processes and characteristics. Eng. Geol. 170, 11–23 (2014)

    Article  Google Scholar 

  34. Zhou, Q.; Beaudoin, J.J.: Effect of applied hydrostatic stress on the hydration of Portland cement and C3S. Adv. Cem. Res. 15(1), 9–16 (2003)

    Article  Google Scholar 

  35. Ghirian, A.; Fall, M.: Coupled behavior of cemented paste backfill at early ages. Geotech. Geol. Eng. 33(5), 1141–1166 (2015)

    Article  Google Scholar 

  36. Jiang, H.Q.; Fall, M.: Yield stress and strength of saline cemented tailings in sub-zero environments: Portland cement paste backfill. Int. J. Miner. Process. 160, 68–75 (2017)

    Article  Google Scholar 

  37. Adibee, N.; Osanloo, M.; Rahmanpour, M.: Adverse effects of coal mine waste dumps on the environment and their management. Environ. Earth. Sci. 70(4), 1581–1592 (2013)

    Article  Google Scholar 

  38. Åhnberg, H.: On yield stresses and the influence of curing stresses on stress paths and strength measured in triaxial testing of stabilized soils. Can. Geotech. J. 44(1), 54–66 (2007)

    Article  Google Scholar 

  39. Brulin, J.; Blond, E.; Bilbao, E.D.; Rekik, A.; Landreau, M.; Gasser, A.; Colleville, Y.: Experimental set-up for mortar/brick interface strength characterization at high temperature. In: UNITECR’11, Kyoto, Japan (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Sun or Jixiong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Zhang, J. & Zhou, N. Early-Age Strength of Aeolian Sand-Based Cemented Backfilling Materials: Experimental Results. Arab J Sci Eng 43, 1697–1708 (2018). https://doi.org/10.1007/s13369-017-2654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2654-4

Keywords

Navigation