Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Carbonization of Silicon Nanoparticles via Ablation Induced by Femtosecond Laser Pulses in Hexane


Silicon carbide (SiC) has been widely used in various technological applications, including power devices, light-receiving devices, and light-emitting devices. Several methods for fabricating SiC particles with nanometer dimensions have been reported, including carbo-thermal reduction of silica, chemical vapor deposition, laser pyrolysis, and microwave irradiation. To develop a new and simple method for fabricating SiC nanoparticles, we investigated the possibility of using femtosecond-laser ablation. In this paper, we report the formation of SiC nanoparticles by femtosecond-laser ablation on silicon immersed in hexane. By using a high-peak-power laser that can achieve extremely high temperatures and pressures on the silicon surface, SiC nanoparticles were successfully fabricated via ablation in hexane. In our experiments, femtosecond pulses from a Yb-fiber laser were used to irradiate to silicon single crystal. The laser was focused onto a spot on the silicon surface. After ablation, we evaluated the particles on the target substrate and particles in the irradiated hexane. Scanning electron microscopy revealed that the particles range in size from 100 to 400 nm. X-ray diffraction analysis indicated that the nanoparticles might be SiC. The characteristic X-ray photoelectron spectroscopy peaks of nanoparticles were Si-2p (100.1 eV) and C-1s (282.9 eV), which are identical to the characteristic peaks of SiC (John et al. in Handbook of X-ray photoelectron spectroscopy, Physical Electronics, Eden Prairie, 1995; Hijikata et al. in Appl Surf Sci 184:161–166, 2001; Shen et al. in Chem Phys Lett 375:177–184, 2003). We also used transmission electron microscopy and electron energy-loss spectroscopy to evaluate particles from the irradiated hexane. Such a simple method of fabricating SiC nanoparticles by femtosecond-laser ablation may open new possibilities in the development of growth techniques for SiC.

This is a preview of subscription content, log in to check access.


  1. 1.

    John, M.; William, F.S.; Peter, E.S.; Kenneth, D.B.: Handbook of X-Ray Photoelectron Spectroscopy, pp. 40–45, 56–57, 216, 230–231, 238. Physical Electronics, Eden Prairie (1995)

  2. 2.

    Hijikata, Y.; Yaguchi, H.; Yoshikawa, M.; Yoshida, S.: Composition analysis of SiO\(_{2}\)/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films. Appl. Surf. Sci. 184, 161–166 (2001)

  3. 3.

    Shen, G.; Chen, D.; Tang, K.; Qian, Y.; Zhang, S.: Silicon carbide hollow nanospheres, nanowires and coaxial nanowires. Chem. Phys. Lett. 375, 177–184 (2003)

  4. 4.

    Reau, A.; Guizard, B.; Canel, J.; Galy, J.; Tenegal, F.: Silicon carbide nanopowders: the parametric study of synthesis by laser pyrolysis. J. Am. Ceram. Soc. 95, 153–158 (2012)

  5. 5.

    Weitze, C.E.; Palmour, J.W.; Carter, C.H.; Moore, K.; Nordquist, K.K.; Allen, S.; Thero, C.; Bhatnagar, M.: Silicon carbide high-power devices. IEEE Trans. Electron Devices 43, 1732–1741 (1996)

  6. 6.

    Larpkiattaworn, S.; Ngernchuklin, P.; Khongwong, W.; Pankurddee, N.; Wada, S.: The influence of reaction parameters on the free Si and C contents in the synthesis of nano-sized SiC. Ceram. Int. 32, 899 (2006)

  7. 7.

    Chen, X.; Zhu, H.; Cai, J.; Wu, Z.: High-performance 4H–SiC-based ultraviolet pin photodetector. J. Appl. Phys. 102, 024505 (2007)

  8. 8.

    Zakharko, Y.; Botsoa, J.; Alekseev, S.; Lysenko, V.; Bluet, J.M.; Marty, O.; Skryshevsky, V.A.; Guillot, G.: Influence of the interfacial chemical environment on the luminescence of 3C–SiC nanoparticles. J. Appl. Phys. 107, 013503 (2010)

  9. 9.

    Yu, I.K.; Rhee, J.H.; Cho, S.; Yoon, H.K.: Design and installation of DC plasma reactor for SiC nanoparticle production. J. Nucl. Mater. 386–388, 631–633 (2009)

  10. 10.

    Kavecky, S.; Janekova, B.; Madejova, J.; Sajgalik, P.: Silicon carbide powder synthesis by chemical vapour deposition from silane/acetylene reaction system. J. Eur. Ceram. Soc. 20, 1939–1946 (2000)

  11. 11.

    Sachdev, H.; Scheid, P.: Formation of silicon carbide and silicon carbonitride by RF-plasma CVD. Diam. Relat. Mater. 10, 1160 (2001)

  12. 12.

    Kijima, K.; Noguchi, H.; Konishi, M.: Sintering of ultrafine SiC powders prepared by plasma CVD. J. Mater. Sci. 24, 2929–2933 (1989)

  13. 13.

    Cauchetier, M.; Croix, O.; Luce, M.; Michon, M.; Paris, J.; Tistchenko, S.: Laser synthesis of ultrafine powders. Ceram. Int. 13, 13–17 (1987)

  14. 14.

    Hu, A.; Sanderson, J.; Zhou, Y.; Duley, W.W.: Formation of diamond-like carbon by fs laser irradiation of organic liquids. Diam. Relat. Mater. 18, 999–1001 (2009)

  15. 15.

    Compagnini, G.; Scalisi, A.A.; Puglisi, O.: Production of gold nanoparticles by laser ablation in liquid alkanes. J. Appl. Phys. 94, 7874 (2003)

  16. 16.

    Kabashin, A.V.; Meunier, M.: Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys. 94, 7941 (2003)

  17. 17.

    Simakin, A.V.; Voronov, V.V.; Kirichenko, N.A.; Shafeev, G.A.: Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Phys. A Mater. Sci. Process. 79, 1127–1132 (2004)

  18. 18.

    Juodkazis, S.; Nishimura, K.; Tanaka, S.; Misawa, H.; Gamaly, E.G.; Luther-Davies, B.; Hallo, L.; Nicolai, P.; Tikhonchuk, V.T.: Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures. Phys. Rev. Lett. 96, 161101 (2006)

  19. 19.

    Tougaard, S.; Jansson, C.: Background correction in XPS: comparison of validity of different methods. Surf. Interface Anal. 19, 171–174 (1992)

  20. 20.

    Nguyen, T.P.; Lefrant, S.: XPS study of SiO thin films and SiO-metal interfaces. J. Phys. Condens. Matter 1, 5197–5204 (1989)

  21. 21.

    Lan, J.; Yang, Y.; Li, X.: Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Mater. Sci. Eng. A 386, 284–290 (2004)

Download references

Author information

Correspondence to Shingo Ono.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Terakawa, S., Hayashi, S. et al. Carbonization of Silicon Nanoparticles via Ablation Induced by Femtosecond Laser Pulses in Hexane. Arab J Sci Eng 42, 4221–4226 (2017).

Download citation


  • Silicon carbide
  • Nanoparticles
  • Femtosecond laser
  • Under-liquid processing
  • Laser ablation