Skip to main content
Log in

Performance Analysis and Experimental Validation of 2-DOF Fractional-Order Controller for Underactuated Rotary Inverted Pendulum

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Several numbers of controllers are developed and implemented to enhance the performance of rotary single inverted pendulum (RSIP). This paper addresses a new two-degree-of-freedom (2-DOF) fractional control strategy for RSIP, which is a composition of feedback and feed-forward paths. Primary controller relates the perturbation attenuation, while the secondary controller is accountable for set point tracking. The pole placement technique is used for the design of 2-DOF proportional integral derivative (2-DOF PID) controller. In order to intensify the potentiality of 2-DOF PID controller, it is supplemented with fractional calculus. The tuning of fractional parameters is done by frequency domain analysis using the Nyquist plot. The proposed 2-DOF fractional-order PID controller is materialized on RSIP system which out turns the outstanding experimental results for both stabilization and trajectory tracking tasks. The system is investigated for stability, sensitivity and robustness, which confirms the ability of the proposed controller to reject the external random perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghosh, A.; Krishnan, T.R.; Subudhi, B.: Robust proportional–integral–derivative compensation of an inverted cart-pendulum system: an experimental study. IET Control Theory Appl. 6(8), 1145–1152 (2012)

    Article  MathSciNet  Google Scholar 

  2. Zilic, T.; Pavkovic, D.; Zorc, D.: Modeling and control of a pneumatically actuated inverted pendulum. ISA Trans. 48, 327–335 (2009)

    Article  Google Scholar 

  3. Casanova, V.; Alcaina, J.; Salt, J.; Piza, R.; Cuenca, A.: Control of the rotary inverted pendulum through threshold-based communication. ISA Trans. 62, 357–366 (2016)

    Article  Google Scholar 

  4. Magin, R.; Ortigueira, M.D.; Podlubny, I.; Trujillo, J.: Review on the fractional signals and systems. Signal Process. 91, 350–371 (2011)

    Article  MATH  Google Scholar 

  5. Francisco, G.A.J.; Juan, R.G.; Roberto, R.H.J.; Manuel, G.C.: Fractional RC and LC electrical circuits. Ing. Investig. Tecnol. 15(2), 311–319 (2014)

    Google Scholar 

  6. Grzesikiewicz, W.; Wakulicz, A.; Zbiciak, A.: Non-linear problems of fractional calculus in modeling of mechanical systems. Int. J. Mech. Sci. 70, 90–98 (2013)

    Article  Google Scholar 

  7. Pan, I.; Das, S.: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans. 62, 19–29 (2016)

    Article  Google Scholar 

  8. Podlubny, I.: Fractional order systems and \(PI^{\lambda }D^{\mu }\) controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Martin, F.; Monje, C.A.; Moreno, L.; Balaguer, C.: DE-based tuning of \(PI^{\lambda }D^{\mu }\) controllers. ISA Trans. 59, 398–407 (2015)

    Article  Google Scholar 

  10. Keyser, R.D.; Muresan, C.I.; Ionescu, C.M.: A novel auto-tuning method for fractional order PI/PD controllers. ISA Trans. 62, 268–275 (2016)

    Article  Google Scholar 

  11. Das, S.; Pan, I.; Das, S.; Gupta, A.: Improved model reduction and tuning of fractional-order \(PI^{\lambda }D^{\mu }\) controllers for analytical rule extraction with genetic programming. ISA Trans. 51, 237–261 (2012)

    Article  Google Scholar 

  12. Ghosh, A.; Krishnan, T.R.; Tejaswy, P.; Mandal, A.; Pradhan, J.K.; Ranasingh, S.: Design and implementation of a 2-DOF PID compensation for magnetic levitation systems. ISA Trans. 53, 1216–1222 (2014)

    Article  Google Scholar 

  13. Li, M.; Zhou, P.; Zhao, Z.; Zhang, J.: Two-degree-of-freedom fractional order-PID controllers design for fractional order processes with dead-time. ISA Trans. 61, 147–154 (2016)

    Article  Google Scholar 

  14. Sharma, R.; Gaur, P.; Mittal, A.P.: Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Trans. 58, 279–291 (2015)

    Article  Google Scholar 

  15. Vilanova, R.; Alfaro, V.M.; Arrieta, O.: Simple robust autotuning rules for 2-DoF PI controllers. ISA Trans. 51, 30–41 (2012)

    Article  Google Scholar 

  16. User manual inverted pendulum experiment, Quanser (2012)

  17. Charef, A.: Analogue realisation of fractional order integrator, differentiator and fractional \(PI^{\lambda }D^{\mu }\) controller. IEE Proc. Control Theory Appl. 153(6), 714–720 (2006)

    Article  Google Scholar 

  18. Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, F.M.: Frequency band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  19. Djouambi, A.; Charef, A.; Besancon, A.V.: Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function. Int. J. Appl. Math. Comput. Sci. 17(4), 455–462 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Meng, L.; Xue, D.: A new approximation algorithm of fractional order system models based optimization. J. Dyn. Syst. Meas. Control 134, 1–7 (2012)

    Article  Google Scholar 

  21. Xue, D.; Zhao, C.; Chen, Y.Q.: A modified approximation method of fractional order system. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China (2006)

  22. Teplijakov, A.; Petlenkov, E.; Belikov, J.: FOMCON: a MATLAB toolbox for fractional-order system identification and control. Int. J. Microelectron. Comput. Sci. 2(2), 51–62 (2011)

    Google Scholar 

  23. Wolovich, W.A.: Automatic Control Systems. Oxford University Press, Oxford (1993)

    Google Scholar 

  24. De, A.; Sen, S.: Root locus method for any fractional order commensurate system. In: Proceedings of the 2011 IEEE Students’ Technology Symposium, IIT Kharagpur, India, pp. 323–328 (2011)

  25. Patil, M.D.; Vyawahare, V.A.; Bhole, M.K.: A new and simple method to construct root locus of general fractional-order systems. ISA Trans. 53, 380–390 (2014)

    Article  Google Scholar 

  26. Qiu, J.; Tian, H.; Lu, Q.; Gao, H.: Nonsynchronized robust filtering design for continuous-time TS fuzzy affine dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Cybern. 43(6), 1755–1766 (2013)

    Article  Google Scholar 

  27. Qiu, J.; Ding, S.X.; Gao, H.; Yin, S.: Fuzzy-model-based reliable static output feedback \(H-\infty \) control of nonlinear hyperbolic PDE systems. IEEE Trans. Fuzzy Syst. 24(2), 388–400 (2016)

    Article  Google Scholar 

  28. Qiu, J.; Wei, Y.L; Wu, LG.: A novel approach to reliable control of piecewise affine systems with actuator faults. IEEE Trans. Circuits Syst II: Express Briefs. (2016). doi:10.1109/TCSII.2016.2629663

  29. Gawthrop, P.J.; Wang, L.: Intermittent predictive control of an inverted pendulum. Control Eng. Pract. 14, 1347–1356 (2006)

    Article  Google Scholar 

  30. Mills, A.; Wills, A.; Ninness, B.: Nonlinear model predictive control of an inverted pendulum. In: Proceedings of the American Control Conference, St. Louis, pp. 2335–2340 (2009)

  31. Mujumdar, A.; Tamhane, B.; Kurode, S.: Fractional order modeling and control of a flexible manipulator using sliding modes. In: American Control Conference (ACC), Portland, Oregon, USA, pp. 2011–2016 (2014)

  32. Qiu, J.; Wang, T.; Yin, S.; Gao, H.: Data-based optimal control for networked double-layer industrial processes. IEEE Trans. Ind. Electron. 64, 4179–4186 (2017)

    Article  Google Scholar 

  33. Qiu, J.; Gao, H.; Ding, S.X.: Recent advances on fuzzy-model-based nonlinear networked control systems: a survey. IEEE Trans. Ind. Electron. 63(2), 1207–1217 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Dwivedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, P., Pandey, S. & Junghare, A. Performance Analysis and Experimental Validation of 2-DOF Fractional-Order Controller for Underactuated Rotary Inverted Pendulum. Arab J Sci Eng 42, 5121–5145 (2017). https://doi.org/10.1007/s13369-017-2618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2618-8

Keywords

Navigation