Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A Study to Enhance the Depth of Penetration in Grade P91 Steel Plate Using Alumina as Flux in FBTIG Welding


Tungsten inert gas (TIG) welding has an inherent difficulty in achieving deep penetration. To improve the penetration in TIG welding process, many researchers are continuously working in this field. In this paper, weld penetration of bead on plate TIG welding was compared with flux-bounded TIG (FBTIG) welding which was carried out on 6-mm-thick P91 plates. In the present FBTIG welding, a ceramic flux consisting of alumina was used instead of silica. Sodium silicate was used instead of acetone in the experiments to bind the flux on to the plates. In this paper, bead on plate FBTIG welding was carried out to investigate whether weld penetration could be improved. It was observed that with FBTIG welding, using ceramic flux, the weld penetration increased 2–3 times the penetration obtained during TIG welding. The weld width in all the cases decreased compared with conventional TIG welding. The effect of flux gap on hardness and grain size at the heat-affected zone were also investigated. Compared with TIG welds, FBTIG-welded samples had larger grain size and lower hardness values in the welded and heat-affected zone.

This is a preview of subscription content, log in to check access.


  1. 1.

    Meredith, R.: Welding Torch, U.S. Patent 2,274,631A (1942)

  2. 2.

    Lucas, W.; Howse, D.: Activating flux increasing the performance and productivity of the TIG and plasma processes. Weld. Met. Fabr. 1, 11–17 (1996)

  3. 3.

    Lucas, W.: Activating flux improving the performance of the TIG process. Weld. Met. Fabr. 68, 7–10 (2000)

  4. 4.

    Kou, S.: Welding Metallurgy, 2nd edn. Wiley, New York (2003)

  5. 5.

    Maduraimuthu, V.; Vasudevan, M.; Muthupondi, V.; Bhaduri, A.K.; Jayakumar, T.: Study of the effect of activated flux on the microstructure and mechanical properties of mod. 9Cr–1Mo steel. Metall. Mater. Trans. B 43(1), 123–132 (2012)

  6. 6.

    Aissani, M.; Guessasma, S.; Zitouni, A.; Hamzaoui, R.; Bassir, D.; Benkedda, Y.: Three-dimensional simulation of 304L steel TIG welding process: contribution of the thermal flux. Appl. Therm. Eng. 89, 822–832 (2015)

  7. 7.

    Li, D.; Lu, S.; Dong, W.; Li, D.; Li, Y.: Study of the law between the weld pool shape variations with the welding parameters under two TIG processes. J. Mater. Process. Technol. 212, 128–136 (2012)

  8. 8.

    Wang, Y.; Tsai, H.L.: Effects of surface active elements on weld pool fluid flow and weld penetration in gas metal arc welding. Metall. Mater. Trans. B 32(3), 501–515 (2001)

  9. 9.

    Kuo, C.H.; Tseng, K.H.; Chou, C.P.: Effect of activated TIG flux on performance of dissimilar welds between mild steel and stainless steel. Key Eng. Mater. 479, 74–80 (2011)

  10. 10.

    Messler Jr., R.W.: Principles of Welding (Processes, Physics, Chemistry, and Metallurgy). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2004)

  11. 11.

    Arivazhagan, B.; Vasudevan, M.: A comparative study on the effect of GTAW processes on the microstructure and mechanical properties of P91 steel weld joints. J. Manuf. Process. 16, 305–311 (2014)

  12. 12.

    Arivazhagan, B.; Vasudevan, M.: A study of microstructure and mechanical properties of grade 91 steel A-TIG weld joint. J. Mater. Eng. Perform. 22, 3708–3716 (2013)

  13. 13.

    Arunkumar, V.; Vasudevan, M.; Maduraimuthu, V.; Muthupandi, V.: Effect of activated flux on the microstructure and mechanical properties of 9Cr–1Mo steel weld joint. Mater. Manuf. Process. 27, 1171–1177 (2012)

  14. 14.

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A.K.; Jayakumar, T.: Effect of activated flux on the microstructure, mechanical properties, and residual stresses of modified 9Cr-1Mo steel weld joints. Metall. Mater. Trans. B 43(1), 123–132 (2012)

  15. 15.

    Arivazhagan, B.; Vasudevan, M.: Studies on A-TIG welding of 2.25Cr–1Mo (P22) steel. J. Manuf. Process. 18, 55–59 (2015)

  16. 16.

    Santhana Babu, A.V.; Giridharan, P.K.: Productivity improvement in flux assisted TIG welding. Int. J. Des. Manuf. Technol. 6(2), 55–62 (2012)

  17. 17.

    Tseng, K.H.; Lin, P.Y.: UNS S31603 stainless steel tungsten inert gas welds made with microparticle and nanoparticle oxides. Materials 7(6), 4755–4772 (2014)

  18. 18.

    Paskell, T.; Lundin, C.; Castner, H.: GTAW flux increases weld joint penetration. Weld. J. 76(4), 57–62 (1997)

  19. 19.

    Huang, Y.; Fan, D.; Shao, F.: Alternative current flux zoned tungsten inert gas welding process for aluminium alloys. Sci. Technol. Weld. Join. 17(2), 122–127 (2012)

  20. 20.

    Vora, J.J.; Badheka, V.J.: Improved penetration with the use of oxide fluxes in activated TIG welding of low activation ferritic/martensitic steel. Trans. Indian Inst. Met. 69(9), 1755–1764 (2016)

  21. 21.

    Conaway, H.R.; Olsen, B.F.; Fish, R.E.: Welding Compositions. United States Patent, Patent No. 5525163 (1996)

  22. 22.

    Johnson, M.Q.; Fountain, C.M.: Penetration Flux. United States Patent, Patent No. US 6707005 B1 (2004)

  23. 23.

    Johnson, M.Q.; Fountain, C.M.: Penetration Flux. United States Patent, Patent No. US 6664508 B1 (2003)

  24. 24.

    Muthukumaran, V.; Bhaduri, A.K.; Raj, B.: Penetration Enhancing Flux Formulation for Tungsten Inert Gas (TIG) Welding of Austenitic Stainless Steel and Its Application. United States Patent, Patent No. US 8097826, B2 (2012)

  25. 25.

    Perry, N.; Marya, S.; Soutif, E.: Study and development of flux enhanced GTA penetrations in a commercial grade titanium. In: 5th International Conference on Trends in Welding Research, ASM/AWS Pine Mountains, Georgia, pp. 1–5, 520–525 (1998)

  26. 26.

    Sire, S.; Marya, S.: New perspectives in GTA welding of carbon steels by the use of silica. Int. J. Form. Process. 3, 279–301 (2000)

  27. 27.

    Sire, S.; Marya, S.: Productivity gains by flux bounded TIG welding of aluminum. Mater. Sci. Forum 426, 4033–4038 (2003)

  28. 28.

    Marya, S.; Sire, S.: Proceedings of the 7th International Symposium. JWS, pp. 107–112 (2001)

  29. 29.

    Sire, S.; Marya, S.: On the development of a new flux bounded TIG process (FBTIG) to enhance weld penetrations in aluminum 5086. Int. J. Form. Process. 5, 39–51 (2002)

  30. 30.

    Marya, S.: Overview of Innovative developments in science and technology of welding. Int. J. Mech. Mater. Eng. IJMME 1(1), 1–10 (2006)

  31. 31.

    Liu, L.; Zhang, Z.; Song, G.; Shen, Y.: Effect of cadmium chloride flux in active flux TIG welding of magnesium alloys. Mater. Trans. 47(2), 446–449 (2006)

  32. 32.

    Ruckert, G.; Perry, N.; Sire, S.; Marya, S.: Enhanced Weld Penetrations in GTA Welding with Activating Fluxes Case studies: Plain Carbon & Stainless Steels. Titanium and Aluminum, HAL Id: hal-00941234 (2014)

  33. 33.

    Zhao, Y.; Yang, G.; Yan, K.; Liu, W.: Effect on formation of 5083 aluminum alloy of activating flux in FBTIG welding. Adv. Mater. Res. 311, 2385–2388 (2011)

  34. 34.

    Babu, A.S.; Giridharan, P.K.; Narayanan, P.R.; Narayana Murty, S.V.S.; Sharma, V.M.J.: Experimental investigations on tensile strength of flux bounded TIG welds of AA2219-T87 aluminum alloy. J. Adv. Manuf. Syst. 13(02), 103–112 (2014)

  35. 35.

    Santhana Babu, A.V.; Giridharan, P.K.; Ramesh Narayanan, P.; Narayana Murty, S.V.S.: Microstructural investigations on ATIG and FBTIG welding of AA 2219 T87 aluminum alloy. Appl. Mech. Mater. 592, 489–493 (2014)

  36. 36.

    Santhana Babu, A.V.; Giridharan, P.K.; Ramesh Narayanan, P.; Narayana Murty, S.V.S.: Prediction of bead geometry for flux bounded TIG welding of AA 2219-T87 aluminum alloy. J. Adv. Manuf. Syst. 15(2), 69–84 (2016)

  37. 37.

    Lin, H.-L.; Wu, T.-M.: Effects of activating flux on weld bead geometry of Inconel 718 alloy TIG welds. Mater. Manuf. Process. 27, 1457–1461 (2012)

  38. 38.

    Brozda, J.; Lomozik, M.; Zeman, M.: A welding of P91 steel to other grades of steel for elevated temperature service. Weld. Int. 12(7), 509–518 (1998)

  39. 39.

    Di Gianfrancesco, A.; Tassa, O.; Matera, S.; Cumino, G.: High alloy ferritic steel: mechanical and creep properties and its microstructure evolution. In: Advanced Heat Resistant Steels for Power Generation. Conference, pp. 622–632 (1998)

  40. 40.

    ASTM, Designation: A387/A387M-06a, Standard Specification for Pressure Vessel Plates, Alloy Steel, Chromium-Molybdenum

  41. 41.

    Hasegawa, Y.; Ohgami, M.; Okamoto, Y.: Creep properties of heat affected zone of weld in W containing 9–12% Chromium creep resistant martensitic steels at elevated temperature. In: Advanced Heat Resistant Steels for Power Generation. Conference (1998)

  42. 42.

    Subashini, L.; Madhumitha, P.; Vasudevan, M.: Optimisation of welding process for modified 9Cr–1Mo steel using genetic algorithm. Int. J. Comput. Mater. Sci. Surf. Eng. 5(1), 1–15 (2012)

  43. 43.

    Maduraimuthu, V.; Vasudevan, M.; Parameswaran, P.: Studies on improvement of toughness in modified 9Cr–1Mo steel A-TIG weld joint. Trans. Indian Inst. Met. 68(2), 181–189 (2015)

  44. 44.

    Dhandha, K.H.; Badheka, V.J.: Effect of activating fluxes on weld bead morphology of P91 steel bead-on-plate welds by flux assisted tungsten inert gas welding process. J. Manuf. Process. 17, 48–57 (2015)

  45. 45.

    Singh, A.K.; Debnath, T.; Dey, V.; Rai, R.N.: A study on effect of preheating and post weld heat treatment (PWHT) of grade P91 steel. J. Mater. Sci. Mech. Eng. 2(8), 57–62 (2015)

  46. 46.

    Jablonski, P.D.; Alman, D.; Dogan, O.; Holcomb, G.; Cowen, C.: 9Cr–1Mo Steel Material for High Temperature Application. United States Patent, Patent No.: US 8317944 B1 (2012)

  47. 47.

    Coleman, K.K.; Newell Jr., W.F.: P91 and beyond. Weld. J. 86(8), 29–32 (2007)

  48. 48.

    Singh, A.K.; Dey, V.; Rai, R.N.: Study on the effect of high-temperature ceramic fiber insulating board to weld grade P-91 steel. J. Manuf. Process. 25, 1–7 (2017)

  49. 49.

    Abdrakhimova, E.S.; Abdrakhimov, V.Z.: Properties of structural insulation ceramic materials from a mixture of intershale clay and anthracite flotation wastes. Solid Fuel Chem. 48(5), 302–306 (2014)

  50. 50.

    De Bruin, H.J.; Moodie, A.F.; Warble, C.E.: Ceramic-metal reaction welding. J. Mater. Sci. 7, 909–918 (1972)

  51. 51.

    Gumen, V.; Illyas, B.; Maqsood, A.; ul Haq, A.: High-temperature thermal conductivity of ceramic fibers. J. Mater. Eng. Perform. 10(4), 475–478 (2001)

  52. 52.

    Sire, S.; Marya, S.: On the selective silica application to improve welding performance of the tungsten arc process for a plain carbon steel and for aluminium. Comptes Rendus Mec. 330(2), 83–89 (2002)

  53. 53.

  54. 54.

    Antonovič, V.; Goberis, S.; Mačiulaitis, R.: The effect of sodium silicate and its solution on the properties of refractory complex binder. Statyba 5(3), 211–216 (1999)

  55. 55.

    LaFay, V.: Application of no-bake sodium silicate binder systems. Int. J. Metalcast. 6(3), 19–26 (2012)

  56. 56.

    Jina, W.; Zitian, F.; Xiaolei, Z.; Di, P.: Properties of sodium silicate bonded sand hardened by microwave heating. Res. Dev. 6(3), 191–196 (2009)

  57. 57.

    Funderburk, S.R.: Key concepts in welding engineering. Weld. Innov. 16(1), 1–4 (1999)

  58. 58.

    Liu, L.M.; Zhang, Z.D.; Song, G.; Wang, L.: Mechanism and microstructure of oxide fluxes for gas tungsten arc welding of magnesium alloy. Metall. Mater. Trans. A 38(3), 649–658 (2007)

  59. 59.

    Jayakrishnan, S.; Chakravarthy, P.; Muhammed Rijas, A.: Effect of flux gap and particle size on the depth of penetration in FBTIG welding of aluminium. Trans. Indian Inst. Met. 70(5), 1329–1335 (2016)

  60. 60.

    Singh, A.K.; Debnath, T.; Dey, V.; Rai, R.N.: An approach to maximize weld penetration during TIG welding of P91 steel plates by utilizing image processing and Taguchi orthogonal array. J. Inst. Eng. India Ser. C (2016). doi:10.1007/s40032-016-0268-3

  61. 61.

    Standard, A.S.T.M.: E112: Standard Test Methods for Determining Average Grain Size. West Conshocken (1996)

  62. 62.

    ASTM: Designation: E384-11: Standard Test Method for Knoop and Vickers Hardness of Materials, pp. 1–43 (2015)

  63. 63.

    Vasantharaja, P.; Vasudevan, M.: Studies on A-TIG welding of low activation ferritic/martensitic (LAFM) steel. J. Nucl. Mater. 421, 117–123 (2012)

  64. 64.

    Das, C.R.; Albert, S.K.; Swaminathan, J.; Bhaduri, A.K.; Raj, B.; Murty, B.S.: Improvement in Creep Resistance of Modified 9Cr–1Mo steel Weldment By Boron Addition, Welding in the World, Vol. 56 (2012)

  65. 65.

    Polachova, D.; Svobodova, M.; Hajkova, P.; Uzel, J.: Comparison of Mechanical Properties of P91 Steel Depending on Temperature and Annealing Time. COMAT, Plzen, Czech Republic, Eu (2012)

  66. 66.

    Dey, H.C.; Albert, S.K.; Bhaduri, A.K.; Roy, G.G.; Balakrishnan, R.; Panneerselvi, S.: Effect of post-weld heat treatment (PWHT) time and multiple PWHT on mechanical properties of multi-pass TIG weld joints of modified 9Cr–1Mo steel. Weld. World 58, 389–395 (2014)

Download references

Author information

Correspondence to Akhilesh Kumar Singh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Dey, V. & Rai, R.N. A Study to Enhance the Depth of Penetration in Grade P91 Steel Plate Using Alumina as Flux in FBTIG Welding. Arab J Sci Eng 42, 4959–4970 (2017).

Download citation


  • Flux-bounded (FBTIG) welding
  • Ceramic flux
  • Weld penetration
  • Flux gaps