Skip to main content

Evolution Prediction and Process Support of OSS Studies: A Systematic Mapping

Abstract

Open source software (OSS) evolution is an important research domain, and it is continuously getting more and more attention of researchers. A large number of studies are published on different aspects of OSS evolution. Different metrics, models, processes and tools are presented for predicting the evolution of OSS studies. These studies foster researchers for contemporary and comprehensive review of literature on OSS evolution prediction. We present a systematic mapping that covers two contexts of OSS evolution studies conducted so far, i.e., OSS evolution prediction and OSS evolution process support. We selected 98 primary studies from a large dataset that includes 56 conference, 35 journal and 7 workshop papers. The major focus of this systematic mapping is to study and analyze metrics, models, methods and tools used for OSS evolution prediction and evolution process support. We identified 20 different categories of metrics used by OSS evolution studies and results show that SLOC metric is largely used. We found 13 different models applied to different areas of evolution prediction and auto-regressive integrated moving average models are largely used by researchers. Furthermore, we report 13 different approaches/methods/tools in existing literature for the evolution process support that address different aspects of evolution.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Fernandez-Ramil, J.; Lozano, A.; Wermelinger, M.; Capiluppi, A.: Empirical studies of open source evolution. In: Software Evolution, pp. 263–288. Springer (2008)

  2. 2.

    Spinellis, D.; Giannikas, V.: Organizational adoption of open source software. J. Syst. Softw. 85(3), 666–682 (2012)

    Article  Google Scholar 

  3. 3.

    Xie, G.; Chen, J.; Neamtiu, I.: Towards a better understanding of software evolution: an empirical study on open source software. Proc. Softw. Maint. ICSM 2009, 51–60 (2009)

    Google Scholar 

  4. 4.

    Cosentino, V.; Luis, J.; Cabot, J.: Findings from GitHub: methods, datasets and limitations. In: Proceedings of the 13th International Workshop on Mining Software Repositories, pp. 137–141 (2016)

  5. 5.

    Mahbubul Syeed, M.M.; Hammouda, I.; Systä, T.: Evolution of open source software projects: a systematic literature review. J. Softw. 8, 2815–2829 (2013)

    Google Scholar 

  6. 6.

    Breivold H.P.; Chauhan M.A.; Babar M.A.: A systematic review of studies of open source software evolution. In: Software Engineering Conference (APSEC), 2010 17th Asia Pacific, pp. 356–365 (2010)

  7. 7.

    Koch, S.: Software evolution in open source projects—a large scale investigation. J. Softw. Maint. Evol. Res. Pract. 19(6), 361–382 (2007)

    Article  Google Scholar 

  8. 8.

    Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M.: Systematic mapping studies in software engineering. In: 12th International Conference on Evaluation and Assessment in Software Engineering, pp. 71–80 (2008)

  9. 9.

    Lehman, M.M.; Belady, L.A.: Program evolution-processes of software change. Academic Press, London (1985)

    MATH  Google Scholar 

  10. 10.

    Lehman, M.M.; Ramil, J.F.: Rules and tools for software evolution planning and management. Ann. Softw. Eng. 11, 15–44 (2001)

    Article  MATH  Google Scholar 

  11. 11.

    Software Engineering Group. Department of Computer Science, Guidelines for performing Systematic Literature Reviews in Software Engineering. EBSE Technical Report EBSE-2007-01, Version 2.3. 9 (July, 2007)

  12. 12.

    Ivarsson, M.; Gorschek, T.: Technology transfer decision support in requirements engineering research: a systematic review of REj. Requir. Eng. 14(2009), 155–175 (2009)

    Article  Google Scholar 

  13. 13.

    Robles G.; Amor J.J.; Gonzalez-Barahona J.M.; Herraiz I.; Evolution and growth in large libre software projects. In: Proceedings of Eighth International Workshop on Principles of Software Evolution (IWPSE 2005), pp. 165–174 (2005)

  14. 14.

    Capiluppi, A.; Lago, P.; Morisio, M.: Evidences in the evolution of OS projects through Changelog analyses. In: Proceedings 3rd Workshop on Open Source Software Engineering, 25th International Conference on Software Engineering, pp. 19–24 (2003)

  15. 15.

    Robles-Martinez, G.; Gonzalez-Barahona, J.M.; Centeno-Gonzalez, J.; Matellan-Olivera, V.; Rodero-Merino, L.: Studying the evolution of libre software projects using publicly available data. In: Proceedings of 3rd Workshop on Open Source Software Engineering, 25th International Conference on Software Engineering, pp. 111–116 (2003)

  16. 16.

    Fogel, K.: Open source development with cvs. Coriolis Open Press, Scottsdale (1999)

    Google Scholar 

  17. 17.

    Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S.: Systematic literature reviews in software engineering-a systematic literature review. Inf. Softw. Technol. 51(1), 7–15 (2009)

    Article  Google Scholar 

  18. 18.

    Lee, Y.; Yang, J.; Chang, K.H.: Metrics and evolution in open source software. In: Seventh International Conference on Quality Software (QSIC 2007), pp. 191–197 (2007)

  19. 19.

    Kitchenham, B.A.; Budgen, D.; Brereton, O.P.: Using mapping studies as the basis for further research—A participant–observer case study. Inf. Softw. Technol. 53(6), 638–651 (2011)

    Article  Google Scholar 

  20. 20.

    Syeed, M.M.; Kilamo, T.; Hammouda, I.; Systä, T: Open source prediction methods: a systematic literature review. In: IFIP International Conference on Open Source Systems, pp. 280–285 (2012)

  21. 21.

    Catal, C.; Diri, B.: A systematic review of software fault prediction studies. Expert Syst. Appl. 36(4), 7346–7354 (2009)

    Article  Google Scholar 

  22. 22.

    Herraiz, I.; Rodriguez, D.; Robles, G.; Gonzalez-Barahona, J.M.: The evolution of the laws of software evolution: a discussion based on a systematic literature review. ACM Comput. Surv. (CSUR) 46(2), 28 (2013)

    Article  Google Scholar 

  23. 23.

    Lehman, M.M.; Ramil, J.F.: An approach to a theory of software evolution. In: Proceedings of the 4th International Workshop on Principles of Software Evolution, pp. 70–74 (2001)

  24. 24.

    Banker, R.D.; Datar, S.M.; Kemerer, C.F.; Zweig, D.: Software complexity and maintenance costs. Commun. ACM 36(11), 81–94 (1993)

    Article  Google Scholar 

  25. 25.

    Obdam, T.S.; Rademakers, L.W.M.M.; Braam, H., Eecen, P.: Estimating costs of operation & maintenance for offshore wind farms. In: Proceedings of European Offshore Wind Energy Conference, pp. 4–6 (2007)

  26. 26.

    Farber, D.: Six barriers to open source adoption, ZDNet Tech Update, March (2004) [WWW document]

  27. 27.

    Petersen, K.; Vakkalanka, S.; Kuzniarz, L.: Guidelines for conducting systematic mapping studies in software engineering: an update. Inf. Softw. Technol. 64, 1–18 (2015)

    Article  Google Scholar 

  28. 28.

    Smith, N.; Capiluppi, A.; Ramil, J.F.: A study of open source software evolution data using qualitative simulation. Softw. Process: Improv. Pract. 10(3), 287–300 (2005)

    Article  Google Scholar 

  29. 29.

    Skoulis, I.; Vassiliadis, P.; Zarras, A.V.: Growing up with stability: how open-source relational databases evolve. Inf. Syst. 53, 363–385 (2015)

    Article  Google Scholar 

  30. 30.

    Keele, S.: Guidelines for performing systematic literature reviews in software engineering. pp. 1–57, Technical report, EBSE Technical Report EBSE-2007-01 (2007)

  31. 31.

    Chidamber, S.R.; Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans. Softw. Eng. 20(6), 476–493 (1994)

    Article  Google Scholar 

Primary Studies

  1. 32.

    Godfrey, M.W.; Tu, Q.: Evolution in open source software: A case study. In: Proceedings of International Conference on Software Maintenance, pp. 131–142 (2000)

  2. 33.

    Nakakoji, K.; Yamamoto, Y.; Nishinaka, Y.; Kishida, K.; Ye, Y.: Evolution patterns of open-source software systems and communities. In: Proceedings International Workshop on Principles of Software Evolution, pp. 76–85 (2002)

  3. 34.

    Paulson, J.W.; Succi, G.; Eberlein, A.: An empirical study of open-source and closed-source software products. IEEE Trans. Softw. Eng. 30(4), 246–256 (2004)

  4. 35.

    Herraiz, I.; Gonzalez-Barahona, J.M.; Robles, G.; German, D.M.: On the prediction of the evolution of libre software projects. In: Proceedings of IEEE International Conference on Software Maintenance, pp. 405–414 (2007)

  5. 36.

    Goulão, M.; Fonte, N.; Wermelinger, M.; Brito e Abreu, F.: Software evolution prediction using seasonal time analysis: a comparative study. In: Proceedings of 16th European Conference on Software Maintenance and Reengineering, pp. 213–222 (2012)

  6. 37.

    Herraiz, I.; Robles, G.; Gonzalez-Barahona, J.M.: Towards predictor models for large libre software projects. ACM SIGSOFT Softw. Eng. Notes 30(4), 1–6 (2005)

    Article  Google Scholar 

  7. 38.

    Herraiz, I.; Gonzalez-Barahona, J.M.; Robles, G.: Determinism and evolution. In: Proceedings of the Working Conference on Mining Software Repositories, pp. 1–10 (2008)

  8. 39.

    Yu, L.: Indirectly predicting the maintenance effort of open source software. J. Softw. Maint. Evol. Res. Pract. 18(5), 311–332 (2006)

    Article  Google Scholar 

  9. 40.

    Bhattacharya, P.; Iliofotou, M.; Neamtiu, I.; Faloutsos, M.: Graph-based analysis and prediction for software evolution. In: Proceedings of the 34th International Conference on Software Engineering, pp. 419–429 (2012)

  10. 41.

    Raja, U.; Hale, D.P.; Hale, J.E.: Modeling software evolution defects: a time series approach. J. Softw. Maint. Evol. Res. Pract. 21(1), 49–71 (2009)

    Article  Google Scholar 

  11. 42.

    Wu, J.; Holt, R.C.; Hassan, A.E.: Empirical evidence for SOC dynamics in software evolution. In: Proceedings of International Conference on Software Maintenance, pp. 244–254 (2007)

  12. 43.

    Ratzinger, J.; Sigmund, T.; Vorburger, P.; Gall, H.: Mining software evolution to predict refactoring. In: First International Symposium on Empirical Software Engineering and Measurement, pp. 354–363 (2007)

  13. 44.

    Shatnawi, R.; Li, W.: The effectiveness of software metrics in identifying error-prone classes in post-release software evolution process. J. Syst. Softw. 81(11), 1868–1882 (2008)

    Article  Google Scholar 

  14. 45.

    Illes-Seifert, T.; Paech, B.: Exploring the relationship of a file’s history and its fault-proneness: an empirical method and its application to open source programs. Inf. Softw. Technol. 52(5), 539–558 (2010)

    Article  Google Scholar 

  15. 46.

    Binkley, D.; Feild, H.; Lawrie, D.; Pighin, M.: Software fault prediction using language processing. In: Testing: Academic and Industrial Conference Practice and Research Techniques-MUTATION, pp. 99–110 (2007)

  16. 47.

    Ullah, N.: A method for predicting open source software residual defects. Softw. Quality J. 23(1), 1–22 (2014)

  17. 48.

    Knab, P.; Pinzger, M.; Bernstein, A.: Predicting defect densities in source code files with decision tree learners. In: Proceedings of the International Workshop on Mining Software Repositories, pp. 119–125 (2006)

  18. 49.

    Ekanayake, J.; Tappolet, J.; Gall, H.C.; Bernstein, A.: Tracking concept drift of software projects using defect prediction quality. In: Proceedings of 6th IEEE International Working Conference on Mining Software Repositories, pp. 51–60 (2009)

  19. 50.

    Shawky, D.M.; Ali, A.F.: Modeling clones evolution in open source systems through chaos theory. In: Proceedings of 2nd International Conference on Software Technology and Engineering (ICSTE), vol. 1, pp. V1-159 (2010)

  20. 51.

    Ratzinger, J.; Gall, H.; Pinzger, M.: Quality assessment based on attribute series of software evolution. In: Proceedings of 14th Working Conference on Reverse Engineering, pp. 80–89 (2007)

  21. 52.

    Mirarab, S.; Hassouna, A.; Tahvildari, L.: Using bayesian belief networks to predict change propagation in software systems. In: Proceedings of 15th IEEE International Conference on Program Comprehension, pp. 177–188 (2007)

  22. 53.

    Askari, M.; Holt, R.: Information theoretic evaluation of change prediction models for large-scale software. In: Proceedings of the 2006 International Workshop on Mining Software repositories, pp. 126–132 (2006)

  23. 54.

    Olague, H.M.; Etzkorn, L.H.; Messimer, S.L.; Delugach, H.S.: An empirical validation of object oriented class complexity metrics and their ability to predict error prone classes in highly iterative, or agile, software: a case study. J. Softw. Maint. Evol. Res. Pract. 20(3), 171–197 (2008)

    Article  Google Scholar 

  24. 55.

    Rossi, B.; Russo, B.; Succi, G.: Modelling failures occurrences of open source software with reliability growth. In: IFIP International Conference on Open Source Systems, pp. 268–280 (2010)

  25. 56.

    Koponen, T.: Evaluation framework for open source software maintenance. In: Proceedings of International Conference on Software Engineering Advances, pp. 52-52 (2006)

  26. 57.

    Biçer, S.; Bener, A.B.; Çağlayan, B.: Defect prediction using social network analysis on issue repositories. In: Proceedings of the International Conference on Software and Systems Process pp. 63–71 (2011)

  27. 58.

    Bouktif, S.; Sahraoui, H.; Ahmed, F.: Predicting stability of open-source software systems using combination of Bayesian classifiers. ACM Trans. Manag. Inf. Syst. (TMIS) 5(1), 1–26 (2014)

  28. 59.

    Capiluppi, A.; Beecher, K.: Structural complexity and decay in FLOSS systems: An inter-repository study. In: Proceedings of 13th European Conference on Software Maintenance and Reengineering, pp. 169–178 (2009)

  29. 60.

    Di Ruscio, D.; Pelliccione, P.; Pierantonio, A.: EVOSS: A tool for managing the evolution of free and open source software systems. In: Proceedings of 34th International Conference on Software Engineering (ICSE), pp. 1415–1418 (2012)

  30. 61.

    Ouktif, S.; Antoniol, G.; Merlo, E.; Neteler, M.: A feedback based quality assessment to support open source software evolution: the GRASS case study. In: Proceedings of 22nd IEEE International Conference on Software Maintenance, pp. 155–165 (2006)

  31. 62.

    Malik, H.; Hassan, A.E.: Supporting software evolution using adaptive change propagation heuristics. In: Proceedings of IEEE International Conference on Software Maintenance, pp. 177–186 (2008)

  32. 63.

    Kagdi, H.; Gethers, M.; Poshyvanyk, D.: SE 2 model to support software evolution. In: Proceedings of 27th IEEE International Conference on Software Maintenance, pp. 512–515 (2011)

  33. 64.

    Di Cosmo, R.; Di Ruscio, D.; Pelliccione, P.; Pierantonio, A.; Zacchiroli, S.: Supporting software evolution in component-based FOSS systems. Sci. Comput. Program. 76(12), 1144–1160 (2011)

    Article  Google Scholar 

  34. 65.

    Di Ruscio, D.; Pelliccione, P.: Simulating upgrades of complex systems: the case of Free and Open Source. Softw. Inf. Softw. Technol. 56(4), 438–462 (2014)

    Article  Google Scholar 

  35. 66.

    Yamakami, T.: A two-dimensional classification model of OSS: towards successful management of the evolution of OSS. In: Proceedings of 13th International Conference on Advanced Communication Technology (ICACT), pp. 1336–1341 (2011)

  36. 67.

    Zenger, M.: Keris: evolving software with extensible modules. J. Softw. Maint. Evol. Res. Pract. 17(5), 333–362 (2005)

    Article  Google Scholar 

  37. 68.

    Concas, G.; Lunesu, M.I.; Marchesi, M.; Zhang, H.: Simulation of software maintenance process, with and without a work in process limit. J. Softw. Evol. Process 25(12), 1225–1248 (2013)

    Article  Google Scholar 

  38. 69.

    Zhang, L.; Kim, M.; Khurshid, S.: FaultTracer: a spectrumbased approach to localizing failure-inducing program edits. J. Softw. Evol. Process 25(12), 1357–1383 (2013)

    Article  Google Scholar 

  39. 70.

    Scanniello, G.; Gravino, C.; Marcus, A.; Menzies, T.: Class level fault prediction using software clustering. In: Proceedings of IEEE/ACM 28th International Conference on Automated Software Engineering (ASE), pp. 640–645 (2013)

  40. 71.

    Panichella, A.; Oliveto, R.; De Lucia, A.: Cross-project defect prediction models: L’Union fait la force. In: Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), pp. 164–173 (2013)

  41. 72.

    He, Z.; Peters, F.; Menzies, T.; Yang, Y.: Learning from open-source projects: An empirical study on defect prediction. In: Proceedings of ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, pp. 45–54 (2013)

  42. 73.

    Zhang, F.; Mockus, A.; Keivanloo, I.; Zou, Y.: Towards building a universal defect prediction model. In: Proceedings of the 11th Working Conference on Mining Software Repositories, pp. 182–191 (2014)

  43. 74.

    Wahyudin, D.; Schatten, A.; Winkler, D.; Tjoa, A.M.; Biffl, S.: Defect Prediction using Combined Product and Project Metrics-A Case Study from the Open Source Apache MyFaces Project Family. In: Proceedings of 34th Euromicro Conference on Software Engineering and Advanced Applications (2008)

  44. 75.

    Malhotra, R.: A defect prediction model for open source software. In: Proceedings of the World Congress on Engineering, vol. 2 (2012)

  45. 76.

    Jing, X.Y.; Ying, S.; Zhang, Z.W.; Wu, S.S.; Liu, J.: Dictionary learning based software defect prediction. In: Proceedings of the 36th International Conference on Software Engineering, pp. 414–423 (2014)

  46. 77.

    English, M.; Exton, C.; Rigon, I.; Cleary, B.: Fault detection and prediction in an open-source software project. In: Proceedings of the 5th International Conference on Predictor Models in Software Engineering, p. 17 (2009)

  47. 78.

    Malhotra, R.; Jain, A.: Fault prediction using statistical and machine learning methods for improving software quality. JIPS 8(2), 241–262 (2012)

    Google Scholar 

  48. 79.

    Sandhu, P.S.; Dhiman, S.K.; Goyal, A.: A genetic algorithm based classification approach for finding fault prone classes. World Acad. Sci. Eng. Technol. 60, 485–488 (2009)

    Google Scholar 

  49. 80.

    Fukushima, T.; Kamei, Y.; McIntosh, S.; Yamashita, K.; Ubayashi, N.: An empirical study of just-in-time defect prediction using cross-project models. In: Proceedings of the 11th Working Conference on Mining Software Repositories, pp. 172–181 (2014)

  50. 81.

    Li, P.L.; Herbsleb, J.; Shaw, M.: Finding predictors of field defects for open source software systems in commonly available data sources: a case study of openbsd. In: 11th IEEE International Symposium on Software Metrics, p. 10 (2005)

  51. 82.

    Caglayan, B.; Bener, A.; Koch, S.: Merits of using repository metrics in defect prediction for open source projects. In: FLOSS’09. ICSE Workshop on Emerging Trends in Free/Libre/Open Source Software Research and Development, pp. 31–36 (2009)

  52. 83.

    Rahman, F.; Devanbu, P.: How, and why, process metrics are better. In: Proceedings of the 2013 International Conference on Software Engineering, pp. 432–441 (2013)

  53. 84.

    Olague, H.M.; Etzkorn, L.H.; Gholston, S.; Quattlebaum, S.: Empirical validation of three software metrics suites to predict fault-proneness of object-oriented classes developed using highly iterative or agile software development processes. IEEE Trans. Softw. Eng. 33(6), 402–419 (2007)

    Article  Google Scholar 

  54. 85.

    Premraj, R.; Herzig, K.: Network versus code metrics to predict defects: A replication study. In: International Symposium on Empirical Software Engineering and Measurement (ESEM), pp. 215–224 (2011)

  55. 86.

    Marcus, A.; Poshyvanyk, D.; Ferenc, R.: Using the conceptual cohesion of classes for fault prediction in object-oriented systems. IEEE Trans. Softw. Eng. 34(2), 287–300 (2008)

    Article  Google Scholar 

  56. 87.

    Haider, S.W.; Cangussu, J.W.; Cooper, K.M.; Dantu, R.: Estimation of defects based on defect decay model: \(\text{ ED }^3\) M. IEEE Trans. Softw. Eng. 34(3), 336–356 (2008)

    Article  Google Scholar 

  57. 88.

    Song, Q.; Jia, Z.; Shepperd, M.; Ying, S.; Liu, J.: A general software defect-proneness prediction framework. IEEE Trans. Softw. Eng. 37(3), 356–370 (2011)

    Article  Google Scholar 

  58. 89.

    Zhou, Y.; Leung, H.: Empirical analysis of object-oriented design metrics for predicting high and low severity faults. IEEE Trans. Softw. Eng. 32(10), 771–789 (2006)

    Article  Google Scholar 

  59. 90.

    Dejaeger, K.; Verbraken, T.; Baesens, B.: Toward comprehensible software fault prediction models using bayesian network classifiers. IEEE Trans. Softw. Eng. 39(2), 237–257 (2013)

    Article  Google Scholar 

  60. 91.

    Song, Q.; Shepperd, M.; Cartwright, M.; Mair, C.: Software defect association mining and defect correction effort prediction. IEEE Trans. Softw. Eng. 32(2), 69–82 (2006)

    Article  Google Scholar 

  61. 92.

    Ostrand, T.J.; Weyuker, E.J.; Bell, R.M.: Predicting the location and number of faults in large software systems. IEEE Trans. Softw. Eng. 31(4), 340–355 (2005)

    Article  Google Scholar 

  62. 93.

    Pendharkar, P.C.; Subramanian, G.H.; Rodger, J.A.: A probabilistic model for predicting software development effort. IEEE Trans. Softw. Eng. 31(7), 615–624 (2005)

    Article  Google Scholar 

  63. 94.

    Gyimothy, T.; Ferenc, R.; Siket, I.: Empirical validation of object-oriented metrics on open source software for fault prediction. IEEE Trans. Softw. Eng. 31(10), 897–910 (2005)

    Article  Google Scholar 

  64. 95.

    Arafat, O.; Riehle, D.: The commenting practice of open source. In: Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems Languages and Applications, pp. 857–864 (2009)

  65. 96.

    Capiluppi, A.; González-Barahona, J.M.; Herraiz, I.; Robles, G.: Adapting the staged model for software evolution to free/libre/open source software. In: Proceedings of Ninth International on Principles of Software Evolution: In Conjunction with the 6th ESEC/FSE Joint Meeting, pp. 79–82 (2007)

  66. 97.

    Robles, G.; González-Barahona, J.M.; Izquierdo-Cortazar, D.; Herraiz, I.: Tools for the study of the usual data sources found in libre software projects. Int. J. Open Sour. Softw. Process. (IJOSSP) 1(1), 24–45 (2009)

    Article  Google Scholar 

  67. 98.

    Gonzalez-Barahona, J.M.; Robles, G.; Michlmayr, M.; Amor, J.J.; German, D.M.: Macro-level software evolution: a case study of a large software compilation. Empir. Softw. Eng. 14(3), 262–285 (2009)

    Article  Google Scholar 

  68. 99.

    Beecher, K.; Capiluppi, A.; Boldyreff, C.: identifying exogenous drivers and evolutionary stages in FLOSS projects. J. Syst. Softw. 82(5), 739–750 (2009)

    Article  Google Scholar 

  69. 100.

    Bachmann, A.; Bernstein, A.: Software process data quality and characteristics: a historical view on open and closed source projects. In: Proceedings of the Joint International and Annual ERCIM Workshops on Principles of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops, pp. 119–128 (2009)

  70. 101.

    Aversano, L.; Di Brino, M.; Guardabascio, D.; Salerno, M.; Tortorella, M.: Understanding enterprise open source software evolution. Procedia Comput. Sci. 64, 924–931 (2015)

    Article  Google Scholar 

  71. 102.

    Saini, M.; Kaur, K.: Software Evolution Prediction Using Fuzzy Analysis. In: Proceedings of Fourth International Conference on Emerging Applications of Information Technology (EAIT), pp. 349–354 (2014)

  72. 103.

    Aoki, A.; Hayashi, K.; Kishida, K.; Nakakoji, K.; Nishinaka, Y.; Reeves, B.; and Yamamoto, Y.: A case study of the evolution of Jun: an object-oriented open-source 3d multimedia library. In: Proceedings of the 23rd International Conference on Software Engineering, pp. 524–533 (2001)

  73. 104.

    Mockus, A.; Fielding, R.T.; Herbsleb, J.D.: Two case studies of open source software development: Apache and mozilla. ACM Trans. Softw. Eng. Methodol. 11(3), 309–346 (2002)

    Article  Google Scholar 

  74. 105.

    Asklund, U.; Bendix, L.: A study of configuration management in open source software projects. IEE Proc. Softw. 149(1), 40–46 (2002)

    Article  Google Scholar 

  75. 106.

    Schach, S.R.; Jin, B.; Wright, D.R.; Heller, G.Z.; Offutt, A.J.: Maintainability of the Linux kernel. IEE Proc. Softw. 149(1), 18–23 (2002)

    Article  Google Scholar 

  76. 107.

    Bauer, A.; Pizka, M.: The contribution of free software to software evolution. In: Sixth International Workshop on Principles of Software Evolution, pp. 170–179 (2003)

  77. 108.

    Capiluppi, A.: Models for the evolution of OS projects. In: Proceedings of International Conference on Software Maintenance, pp. 65–74 (2003)

  78. 109.

    Capiluppi, A.; Morisio, M.; and Lago, P.: Evolution of understandability in oss projects. In: Proceedings of Eighth Euromicro Working Conference on Software Maintenance and Reengineering, pp. 58–66 (2004)

  79. 110.

    Capiluppi, A.; Ramil, J.F.; e Informatica, D.A.: Studying the evolution of open source systems at different levels of granularity: Two case studies. In: Proceedings of the 7th International Workshop on Principles of Software Evolution, pp. 113–118 (2004)

  80. 111.

    Al-Ajlan, A.: The evolution of open source software using eclipse metrics. International Conference on New Trends in Information and Service Science, pp. 211–218 (2009)

  81. 112.

    Capiluppi, A.; Faria, A.E.; Ramil, J.F.: Exploring the relationship between cumulative change and complexity in an open source system. European Conference on Software Maintenance and Reengineering (CSMR) (2005)

  82. 113.

    Izurieta, C.; and Bieman, J.: The evolution of freebsd and linux. In: Proceedings of the IEEE/ACM International Symposium on Empirical Software Engineering (2006)

  83. 114.

    Wang, Y.; Guo, D.; Shi, H.: Measuring the evolution of open source software systems with their communities. ACM SIGSOFT Softw. Eng. Notes 32(6), 7 (2007)

    Article  Google Scholar 

  84. 115.

    Capiluppi, A.; Morisio, M.; Ramil, J.F.: The evolution of source folder structure in actively evolved open source systems. In: Software Metrics, International Symposium on, pp. 2–13 (2004)

  85. 116.

    Fischer, M.; Pinzger, M.; Gall, H.: Populating a release history database from version control and bug tracking systems. In: Proceedings of International Conference on Software Maintenance, pp. 23–32 (2003)

  86. 117.

    Robles, G.; Gonzalez-Barahona, J.M.; Michlmayr, M.; Amor, J.J.: Mining large software compilations over time: another perspective of software evolution. International Workshop on Mining Software Repositories, pp. 3–9 (2006)

  87. 118.

    Alenezi, M.; Almustafa, K.: Empirical analysis of the complexity evolution in open-source software systems. Int. J. Hyb. Inf. Technol. 8(2), 257–266 (2015)

    Google Scholar 

  88. 119.

    Alenezi, M.; Zarour, M.: Modularity measurement and evolution in object-oriented open-source projects. In: Proceedings of the International Conference on Engineering & MIS, p. 16 (2015)

  89. 120.

    Le, D.M.; Behnamghader, P.; Garcia, J.; Link, D.; Shahbazian, A.; Medvidovic, N.: An empirical study of architectural change in open-source software systems. In: Proceedings of the 12th Working Conference on Mining Software Repositories, pp. 235–245 (2015)

  90. 121.

    Gala-Pérez, S.; Robles, G.; González-Barahona, J.M.; Herraiz, I.: Intensive metrics for the study of the evolution of open source projects: Case studies from Apache Software Foundation projects. In: Proceedings of the 10th Working Conference on Mining Software Repositories, pp. 159–168 (2013)

  91. 122.

    Ben Charrada, E.; Koziolek, A.; Glinz, M.: Supporting requirements update during software evolution. J. Softw. Evol. Process 27(3), 166–194 (2015)

  92. 123.

    Ruohonen, J.; Hyrynsalmi, S.; Leppänen, V.: Time series trends in software evolution. J. Softw. Evol. Process 27(12), 990–1015 (2015)

    Article  Google Scholar 

  93. 124.

    Di Ruscio, D.; Pelliccione, P.: A model driven approach to detect faults in FOSS systems. J. Softw. Evol. Process 27(4), 294–318 (2015)

    Article  Google Scholar 

  94. 125.

    Nzeko’o, A.J.N.; Latapy, M.; Tchuente, M.: Social Network Analysis of Developers’ and Users’ Mailing Lists of Some Free Open Source Software. In: Proceedings of IEEE International Congress on Big Data, pp. 728–732 (2015)

  95. 126.

    Kouroshfar, E.; Mirakhorli, M.; Bagheri, H.; Xiao, L.; Malek, S.; Cai, Y.: A Study on the Role of Software Architecture in the Evolution and Quality of Software. In: Proceedings of the 12th Working Conference on Mining Software Repositories, pp. 246–257 (2015)

  96. 127.

    Threm, D.; Yu, L.; Ramaswamy, S.; Sudarsan, S.D.: Using normalized compression distance to measure the evolutionary stability of software systems. In: Proceedings of 26th International Symposium on Software Reliability Engineering (ISSRE), pp. 112–120 (2015)

  97. 128.

    Malhotra, R.; Khanna, M.: Mining the impact of object oriented metrics for change prediction using Machine Learning and Search-based techniques. In: Proceedings of International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 228–234 (2015)

  98. 129.

    Zhang, W.; Yang, Y.; Wang, Q.: Network analysis of oss evolution: An empirical study on argouml project. In: Proceedings of the 12th International Workshop on Principles of Software Evolution and the 7th annual ERCIM Workshop on Software Evolution, pp. 71–80 (2011)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ghulam Rasool.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rasool, G., Fazal, N. Evolution Prediction and Process Support of OSS Studies: A Systematic Mapping. Arab J Sci Eng 42, 3465–3502 (2017). https://doi.org/10.1007/s13369-017-2556-5

Download citation

Keywords

  • OSS
  • Open source
  • FLOSS
  • Systematic mapping
  • Evolution prediction
  • OSS evolution