Advertisement

Arabian Journal for Science and Engineering

, Volume 42, Issue 12, pp 4983–4990 | Cite as

A Novel Square Wave Generator Using Second-Generation Differential Current Conveyor

  • Vallabhuni Vijay
  • Avireni Srinivasulu
Research Article - Electrical Engineering

Abstract

By using two resistors and a single capacitor with second-generation differential current conveyor as an active element, a new square wave generator is proposed and implemented. The frequency of operation of the introduced model is varied with respect to the variation of remaining passive components. Maximum reduction in noise effects caused by parasitics generated during integrated circuit fabrication is achieved with the scheme of grounded capacitor. The mathematical model of the selected circuit is verified in both simulation and experimental mode and found having matched in all three aspects. The elevated advantages and merits of the given topology are compared and tabulated contrary to the existing standard models. Using Cadence virtuoso with gpdk 180 nm libraries, the circuit is verified with a supply rail voltage of ±2.5 V. Later, prototype is also tested with commercially available current feedback operational amplifiers of AD844AN.

Keywords

Current mode circuit DCCII Duty cycle Monte Carlo analysis Noise effect Oscillators Square wave generators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Authors would like to thank the reviewers for offering their useful comments and suggestions.

References

  1. 1.
    Abuelma’atti, M.T.; Alabsi, M.K.: A low-cost dual-slope triangular/square wave generator. Int. J. Electron. 91(3), 185–190 (2004)CrossRefGoogle Scholar
  2. 2.
    Cheng, W.W.; Larson, L.E.: A low frequency CMOS triangular wave generator. IEEE J. Solid-State Circuits 20(2), 649–652 (1985)CrossRefGoogle Scholar
  3. 3.
    Pal, D.; Srinivasulu, A.; Pal, B.B.; Demosthenous, A.; Das, B.N.: Current conveyor-based square/triangular waveform generators with improved linearity. IEEE Trans. Instrum. Meas. 58(7), 2174–2180 (2009)CrossRefGoogle Scholar
  4. 4.
    Spencer, R.R.; Angell, J.B.: A voltage-controlled duty-cycle oscillator. IEEE J. Solid-State Circuits 25(1), 274–281 (1990)CrossRefGoogle Scholar
  5. 5.
    Siskos, S.; Tombras, G.S.: An externally triggered CMOS triangular pulse generator. Int. J. Electron. 73(3), 615–620 (1992)CrossRefGoogle Scholar
  6. 6.
    Haque, A.K.M.S.; Hossain, M.M.; Davis, W.A.; Russell, H.T.; Carter, R.L.: Design of sinusoidal, triangular, and square wave generator using current feedback amplifier (CFOA). In: IEEE Region 5 Conference, Kansas, USA, April 2008, pp. 1–5Google Scholar
  7. 7.
    Wilson, B.: Recent developments in current conveyors and current mode circuits. IEE Proc. G-Circuits Devices Syst. 137(2), 63–77 (1990)CrossRefGoogle Scholar
  8. 8.
    Srinivasulu, A.; Pal, D.: CCII+ based novel waveform generator with grounded resistor/capacitor for tuning. In: Proceedings of IEEE Applied Electronics International Conference 2016 (IEEE AEIC-16), Pilsen, Czech Republic, 6–7 September 2016, pp. 247–251. doi: 10.1109/AE.2016.7577283
  9. 9.
    Liu, S.I.; Wu, D.S.; Tsao, H.W.; Wu, J.; Tsay, J.H.: Nonlinear circuit applications with current conveyors. IEE Proc. G-Circuits Devices Syst. 140(1), 1–6 (1993)CrossRefGoogle Scholar
  10. 10.
    Jacob, J.M.: Analog Integrated Circuit Applications. Prentice-Hall, New Jersey (2000)Google Scholar
  11. 11.
    Toumazou, C.; Lidegy, F.J.; Haigh, D.: Analog IC Design: The Current-Mode Approach. Peter Peregrinus, Exeter (1990)Google Scholar
  12. 12.
    Cicekoglu, M.O.; Kuntman, H.: On the design of CCII+ based relaxation oscillator employing single grounded passive element for linear period control. Microelectron. J. 29(12), 983–989 (1998)CrossRefGoogle Scholar
  13. 13.
    Ray, B.N.; Nandi, P.K.; Chaudhuri, P.P.: Synthesis of programmable multi-input current-mode linear analog circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 51(8), 1440–1456 (2004)Google Scholar
  14. 14.
    Gift, S.J.G.; Maundy, B.: Improving the bandwidth gain-independence and accuracy of the current feedback amplifier. IEEE Trans. Circuits Syst. II Express. Briefs 52(3), 136–139 (2005)Google Scholar
  15. 15.
    Pal, D.; Srinivasulu, A.; Goswami, M.: Novel current-mode waveform generator with independent frequency and amplitude control, In: Proceedings of the IEEE International Symposium on Circuits and Systems-2009, Taipei, Taiwan, 24–27 May 2009, pp. 2946–2949Google Scholar
  16. 16.
    Lo, Y.-K.; Chien, H.-C.: Switch-controllable OTRA-based square/triangular waveform generator. IEEE Trans. Circuits Syst. II Express. briefs 54(12), 1110–1114 (2007)Google Scholar
  17. 17.
    Hou, C.L.; Chien, H.-C.; Lo, Y.-K.: Squarewave generators employing OTRAs. IEE Proc. Circuits Devices Syst. 152(6), 718–722 (2005)CrossRefGoogle Scholar
  18. 18.
    Silapan, P.; Siripruchyanun, M.: Fully and electronically controllable current-mode Schmitt triggers employing only single MO-CCCDTA and their applications. Analog Integr. Circuits Signal Process. 68(1), 111–128 (2011)CrossRefGoogle Scholar
  19. 19.
    Keskin, A.U.: A four quadrant analog multiplier employing single CDBA. Analog Integr. Circuits Signal Process. 40(1), 99–101 (2004)CrossRefGoogle Scholar
  20. 20.
    Ghallab, Y.H.; Badawy, W.; Kaler, K.V.I.S.; Maundy, B.J.: A novel current mode instrumentation amplifier based on operational floating current conveyor. IEEE Trans. Instrum. Meas. 54(5), 1941–1948 (2005)CrossRefGoogle Scholar
  21. 21.
    Jerabek, J.; Sotner, R.; Dostal, T.; Vrba, K.: Simple resistor-less generator utilizing z-copy controlled gain voltage differencing current conveyor for PWM generation. Elektronika Ir Elektrotechnika 21(5), 28–34 (2015)CrossRefGoogle Scholar
  22. 22.
    Sotner, R.; Jerabek, J.; Herencsar, N.; Dostal, T.; Vrba, K.: Design of Z-copy controlled-gain voltage differencing current conveyor based adjustable functional generator. Microelectron. J. 46(2), 143–152 (2015)CrossRefGoogle Scholar
  23. 23.
    Kim, H.; Kim, H.J.; Chung, W.S.: Pulsewidth modulation circuits using CMOS OTAs. IEEE Trans. Circuits Syst. I Regul. Pap. 54(9), 1869–1878 (2007)Google Scholar
  24. 24.
    Sotner, R.; Jerabek, J.; Herencsar, N.; Lahiri, A.; Petrzela, J., Vrba, K.: Practical aspects of operation of simple triangular and square wave generator employing diamond transistor and controllable amplifiers. In: Proceedings of the 36th International Conference on Telecommunications and Signal Processing (TSP 2013), Rome, Italy, 2–4 July 2013, pp. 431–435Google Scholar
  25. 25.
    Koksal, M.; Sagbas, M.: A versatile signal flow graph realization of a general current transfer function. Int. J. Electron. Commun. 62(1), 33–40 (2008)CrossRefGoogle Scholar
  26. 26.
    Sotner, R.; Jerabek, J.; Herencsar, N.: Voltage differencing buffered/inverted amplifiers and their applications for signal generation. Radioengineering 22(2), 490–504 (2013)Google Scholar
  27. 27.
    Vijay, V.; Srinivasulu, A.: A DCCII based square wave generator with grounded capacitor. In: Proceedings of the 2016 IEEE International Conference on Circuits, Power and Computing Technologies (ICCPCT-2016), Kumaracoil, India, 18–19 March 2016, pp. 1–4Google Scholar
  28. 28.
    Sotner, R.; Jerabek, J.; Herencsar, N.; Prokop, R.; Vrba, K.; Petrzela, J.; Dostal, T.: Simply adjustable triangular and square wave generator employing controlled gain current and differential voltage amplifier. In: Proceedings of the 23th International Conference Radioelektronika, Pardubice, Czech Republic, 16–17 April 2013, pp. 109–114Google Scholar
  29. 29.
    Chien, H.C.: Switch-controllable dual-hysteresis mode bistable multivibrator employing single differential voltage current conveyor. Microelectron. J. 42(5), 745–753 (2011)Google Scholar
  30. 30.
    Elwan, H.O.; Soliman, A.M.: A CMOS differential current conveyor and applications for analog VLSI. Analog Integr. Circuits Signal Process. 11(1), 35–45 (1996)CrossRefGoogle Scholar
  31. 31.
    Metin, B.; Herencsar, N.; Vrba, K.: A CMOS DCCII with a grounded capacitor based cascadable all-pass filter application. Radioengineering 21(2), 718–724 (2012)Google Scholar
  32. 32.
    Gökçen, A.: New Possibilities in the Design of Analog Integrated Circuit with MOS-C Realization. PhD Thesis, Graduate School of Natural and Applied Sciences, Dokuz Eylül University, İzmir, Turkey, June 2010Google Scholar
  33. 33.
    Srinivasulu, A.: A novel current conveyor based Schmitt trigger and its application as a relaxation oscillator. Int. J. Circuit Theory Appl. 39(6), 679–686 (2011)CrossRefGoogle Scholar
  34. 34.
    Srinivasulu, A.: Current conveyor-based square-wave generator with tunable grounded resistor/ capacitor. In: Proceedings of the IEEE Applied Electronics International Conference (AEIC 2009), Pilsen, Czech republic, Sept 2009, pp. 233–236Google Scholar
  35. 35.
    Siripruchyanun, M.; Wardkein, P.: A fully independently adjustable integrable simple current controlled oscillator and derivative PWM signal generator. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 86(E12-A), 3119–3126 (2003)Google Scholar
  36. 36.
    Chien, H.-C.: Voltage-controlled dual slope operation square/triangular wave generator and its application as a dual mode operation pulse width modulator employing differential voltage current conveyors. Microelectron. J. 43(12), 962–974 (2012)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringVignan’s Foundation for Science, Technology and Research University (V.F.S.T.R University)Vadlamudi, GunturIndia

Personalised recommendations