Skip to main content
Log in

An Efficient Maximum Power Point Tracking Controller for Photovoltaic Systems Using Takagi–Sugeno Fuzzy Models

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a new Takagi–Sugeno (T–S) fuzzy model-based maximum power tracking controller to draw the maximum power from a solar photovoltaic (PV) system. A DC–DC boost converter is used to control the output power from the PV panel. Based on the T–S fuzzy model, the fuzzy maximum power point tracking controller is designed by constructing fuzzy gain state feedback controller and an optimal reference model for the optimal PV output voltage, which corresponds actually to maximum power point (MPP). A comparative study with the two base-line controllers of perturb and observe, and the incremental conductance shows that the proposed controller offers fast dynamic response, much less oscillation around MPP, and superior performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cossutta, P.; Aguirre, M.P.; Cao, A.; Raffo, S.; Valla, M.I.: Single-stage fuel cell to grid interface with multilevel current-source inverters. IEEE Trans. Ind. Electron. 62(8), 5256–5264 (2015)

    Article  Google Scholar 

  2. Singh, S.; Subhash, C.K.: Optimal sizing of grid integrated hybrid PV-biomass energy system using artificial bee colony algorithm. IET Renew. Power Gen. 10(5), 642–650 (2016)

    Article  Google Scholar 

  3. Meghni, B.; Dib, D.; Azar, A.T.; Saadoun, A.: Effective supervisory controller to extend optimal energy management in hybrid wind turbine under energy and reliability constraints. Int. J. Dynam. Control 1–15 (2017). doi: 10.1007/s40435-016-0296-0

  4. Rahim, A.H.M.A.; Khan, M.H.: A swarm-based adaptive neural network SMES control for a permanent magnet wind generator. Arab. J. Sci. Eng. 39(11), 7957–7965 (2014)

    Article  Google Scholar 

  5. Vincheh, M.R.; Kargar, A.; Markadeh, G.A.: A hybrid control method for maximum power point tracking (MPPT) in Photovoltaic systems. Arab. J. Sci. Eng. 39(6), 4715–4725 (2014)

    Article  Google Scholar 

  6. Azri, M.; Rahim, N.A.; Elias, M.F.M.: Transformerless DC/AC converter for grid-connected PV power generation system. Arab. J. Sci. Eng. 39(11), 7945–7956 (2014)

    Article  Google Scholar 

  7. Tipler, P.A.; Mosca, G.: Physics for Scientist and Engineers, 6th edn. W.H. Freeman, New York (2008)

  8. Oladimeji, I.; Nor, Z. Y.; Nordin, S.: Matlab/Simulink model of solar PV array with perturb and observe MPPT for maximising PV array efficiency. In: Conference on Energy Conversion (CENCON). pp. 254–258 (2015)

  9. Abdelsalam, A.K.; Massoud, A.M.; Ahmed, S.; Enjeti, P.N.: High performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Trans. Power Electron. 26(4), 1010–1021 (2011)

    Article  Google Scholar 

  10. Manoj, P.; Amruta, D.: Design and simulation of Perturb and Observe Maximum Power Point Tracking using MATLAB/Simulink. In: International Conference on Industrial Instrumentation and Control (ICIC). pp. 1345–1349 (2015)

  11. Safari, A.; Mekhilef, S.: Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cuk converter. IEEE Trans. Ind. Electron. 58(4), 1154–1161 (2011)

    Article  Google Scholar 

  12. Worku, M. Y.; Abido, M. A.: Real-time implementation of grid-connected PV system with decoupled P–Q controllers. In: Conference on Control and Automation (MED). pp. 841–846 (2014)

  13. Kjaer, S.B.: Evaluation of the hill climbing and the incremental conductance maximum power point trackers for photovoltaic power systems. IEEE Trans. Energy Conver. 27(4), 922–929 (2012)

    Article  Google Scholar 

  14. Mohammad, I.B.; Pouya, T.; Yousef, M.N.; Ali, K.K.; Paimaneh, S.: Modeling and simulation of hill climbing MPPT algorithm for photovoltaic application. In: Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Conference on. pp. 1041–1044 (2016)

  15. Adel, A.E.; Hamdi, A.; Montaser, A.S.: Implementation of a modified perturb and observe maximum power point tracking algorithm for photovoltaic system using an embedded microcontroller. IET Renew. Power Gen. 10(4), 551–560 (2016)

    Article  Google Scholar 

  16. Sera, D.; Mathe, L.; Kerekes, T.; Spataru, S.V.; Teodorescu, R.: On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE J. Photovolt. 3(3), 1070–1078 (2013)

    Article  Google Scholar 

  17. Masoum, M.A.S.; Dehbonei, H.; Fuchs, E.F.: Theoretical and experimental analysis of photovoltaic systems with voltage and current-based maximum power-point tracking. IEEE Trans. Energy Conver. 17(4), 514–522 (2002)

    Article  Google Scholar 

  18. Mellit, A.; Kalogirou, Sa: Artificial intelligence techniques for photovoltaic applications: a review. Prog. Energy Combust. Sci. 34(5), 574632 (2008)

    Article  Google Scholar 

  19. Belkaid, A.; Colak, I; Kayisli, K.: Implementation of a modified P&O-MPPT algorithm adapted for varying solar radiation conditions. Electr. Eng. pp. 1–8 (2016)

  20. Ishaque, K.; Salam, Z.; Amjad, M.; Mekhilef, S.: An improved particle swarm optimization (PSO) based MPPT for PV with reduced steady-state oscillation. IEEE Trans. Power Electron. 27(8), 3627–3638 (2012)

    Article  Google Scholar 

  21. Zainuri, M.A.A.M.; Radzi, M.A.M.; Che Soh, A.; Abd Rahim, N.: Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost DC–DC converter. IET Renew. Power Gen. 8(2), 183–194 (2014)

  22. Ahmed, A.; Ali, N.H.; Tshilidzi, M.: Perturb and observe based on fuzzy logic controller maximum power point tracking (MPPT). In: 2014 International Conference on Renewable Energy Research and Application (ICRERA). pp. 406–411 (2014)

  23. Radak, B.; Chitralekha, M.; Anup, K.G.: MPPT of solar photovoltaic cell using perturb & observe and fuzzy logic controller algorithm for buck-boost DC–DC converter. In: 2015 International Conference on Energy, Power and Environment, pp. 1–5 (2015)

  24. Liu, C.-L.; Chen, J.-H.; Liu, Y.-H.; Yang, Z.-Z.: An asymmetrical fuzzy-Logic-control-based MPPT algorithm for photovoltaic systems. Energies 7(4), 2178–2193 (2014)

    Article  Google Scholar 

  25. Vincheh, M.R.; Kargar, A.; Markadeh, G.A.: A hybrid control method for maximum power point tracking (MPPT) in photovoltaic systems. Arab. J. Sci. Eng. 39(6), 4715–4725 (2014)

    Article  Google Scholar 

  26. Abu-Rub, H.; Iqbal, A.; Moin Ahmed, S.; Peng, F.Z.; Li, Y.; Baoming, G.: Quasi-Z-source inverter-based photovoltaic generation system with maximum power tracking control using ANFIS. IEEE Trans. Sustain. Energy 4(1), 11–20 (2013)

    Article  Google Scholar 

  27. Afghoul, H.; Krim, F.; Chikouche, D.: Increase the photovoltaic conversion efficiency using neuro-fuzzy control applied to MPPT. In: Renewable and Sustainable Energy Conference (IRSEC). pp. 348–353 (2013)

  28. Abido, M.A.; Khalid, M.S.; Worku, M.Y.: An efficient ANFIS-based PI controller for maximum power point tracking of PV systems. Arab. J. Sci. Eng. 40(9), 2641–2651 (2015)

    Article  Google Scholar 

  29. Dragan, M.; Srete, N.: ANFIS as a method for determinating MPPT in the photovoltaic system simulated in MATLAB/Simulink. In: Information and Communication Technology, Electronics and Microelectronics, pp. 1082–1086 (2015)

  30. Elkhatib, K.; Abdel, A.: Design of maximum power fuzzy controller for PV systems based on the LMI-based stability. Intelligent Systems in Technical and Medical Diagnostics, Volume 230 of the series Advances in Intelligent Systems and Computing. pp. 77–88 (2012)

  31. Abid, H.; Toumi, A.; Chaabane, M.: MPPT algorithm for photovoltaic panel based on augmented TakagiSugeno fuzzy model. Hindawi Publishing Corporation ISRN Renewable Energy, Article ID 253146 (2014)

  32. Abid, H.; Toumi, A.; Chaabane, M.: TS fuzzy algorithm for photovoltaic panel. Int. J. Fuzzy Syst. 17(2), 215–223 (2015)

    Article  MathSciNet  Google Scholar 

  33. Zhang, S.; Wang, T.; Li C., Zhang, J.; Wang, Y.: Maximum power point tracking control of solar power generation systems based on type-2 fuzzy logic. In: International World Congress on Intelligent Control and Automation, Guilin, pp. 12–15 (2016)

  34. Zayani, H.; Allouche, M.; Kharrat M.; Chaabane M.: Maximum power point tracking control of solar power generation systems based on type-2 fuzzy logic. In: International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, Monastir, Tunisia, December, pp. 21–23 (2016)

  35. Tanaka, K.; Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)

    Book  Google Scholar 

  36. Gahinet, P.; Nemirovski, A.; Laub, A.J.; Chilali, M.: LMI Control Toolbox. MathWorks, Natick (1995)

    Google Scholar 

  37. Villalva, M.G.; Gazoli, J.R.; Filho, E.R.: Comprehensive approach to modelling and simulation of photovoltaic array. IEEE Trans. Power Electron. 25(5), 1198–1208 (2009)

    Article  Google Scholar 

  38. Ballouti, A.; Djahli, F.; Bendjadou, A.: MPPT system for photovoltaic module connected to battery adapted for unstable atmospheric conditions using VHDL-AMS. Arab. J. Sci. Eng. 36(3), 2021–2031 (2014)

    Article  Google Scholar 

  39. Ohtake, H.; Tanaka, K.; Wang, H.: Fuzzy modeling via sector nonlinearity concept. Integr. Comput. Aided Eng. 10(4), 333–341 (2003)

  40. Lian, K.Y.; Liou, J.: Output tracking control for fuzzy systems via output feedback design. IEEE Trans. Fuzzy Sys. 14(5), 381–392 (2006)

    Google Scholar 

  41. Ounnas, D.; Ramdani, M.; Chenikher, S.; Bouktir, T.: Optimal reference model based fuzzy tracking control for wind energy conversion system. Int. J. Renew. Energy Res. 6(3), 1129–1136 (2016)

    Google Scholar 

  42. Bayod-Rjula, -A.; Cebollero-Abin, J.-A.: A novel MPPT method for PV systems with irradiance measurement. Sol. Energy 109, 95–104 (2014)

    Article  Google Scholar 

  43. Atiqah, H.b M.N.; Ahmad, M.b O.; Hedzlin, b Z.: Modeling and simulation of grid inverter in grid-connected photovoltaic system. Int. J. Renew. Energy Res. 4(4), 949–957 (2014)

    Google Scholar 

  44. Ounnas, D.; Ramdani, M.; Chenikher, S.; Bouktir, T.: A combined methodology of \(H_\infty \) fuzzy tracking control and virtual reference model for a PMSM. Adv. Electr. Electron. Eng. 13(3), 212–222 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ounnas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ounnas, D., Ramdani, M., Chenikher, S. et al. An Efficient Maximum Power Point Tracking Controller for Photovoltaic Systems Using Takagi–Sugeno Fuzzy Models. Arab J Sci Eng 42, 4971–4982 (2017). https://doi.org/10.1007/s13369-017-2532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2532-0

Keywords

Navigation