Arabian Journal for Science and Engineering

, Volume 42, Issue 6, pp 2341–2347 | Cite as

MFC—An Approach in Enhancing Electricity Generation Using Electroactive Biofilm of Dissimilatory Iron-Reducing (DIR) Bacteria

  • C. Yuvraj
  • V. AranganathanEmail author
Research Article - Biological Sciences


A potential dissimilatory iron-reducing bacteria Klebsiella pneumoniae was employed in dual chamber microbial fuel cell for the formation of biofilm on the anode surface. Biofilm development on the electrode was examined as extracellular polymeric substances and phospholipids quantitatively. Significant increase in open circuit voltage and the current was observed from first cycle (0.950 V, 1.250 mA) to the last cycle (1.2 V, 1.683 mA) of microbial fuel cell operation. Increasing columbic efficiency from 8 to 62% showed the amount of electrons available from the oxidation of organic matter into electricity. Chemical oxygen demand removal efficiency increment from 44 to 85% establishes effective utilization of organic matter by K. pneumoniae. The scanning electron microscopic observations proved the ability to form a biofilm on an electrode surface. Results of the present study suggested that increasing power output is directly proportional to biofilm formed on the electrode surface. Biofilm development enhances the current production as a result of effective electrocatalysis by K. pneumoniae.


Biofilm Microbial fuel cell COD Columbic efficiency K. pneumoniae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Energy Information Administration, U.S. Department of Energy, Washington, Monthly Energy Review (2015). Accessed 22 Apr 2017
  2. 2.
    Kim, J.R.; Cheng, S.; Oh, S.E.; Logan, B.E.: Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 41(3), 1004–1009 (2007)CrossRefGoogle Scholar
  3. 3.
    Zhang, L.; Zhu, X.; Li, J.; Liao, Q.; Ye, D.: Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances. J Power. Sour. 196(15), 6029–6035 (2011)CrossRefGoogle Scholar
  4. 4.
    Cao, X.; Huang, X.; Boon, N.; Liang, P.; Fan, M.: Electricity generation by an enriched phototrophic consortium in a microbial fuel cell. Electrochem. Commun. 10(9), 1392–1395 (2008)CrossRefGoogle Scholar
  5. 5.
    Bond, D.R.; Lovley, D.R.: Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69(3), 1548–1555 (2003)CrossRefGoogle Scholar
  6. 6.
    Wei, J.; Liang, P.; Cao, X.; Huang, X.: A new insight into potential regulation on growth and power generation of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint. Environ. Sci. Technol. 44(8), 3187–3191 (2010)CrossRefGoogle Scholar
  7. 7.
    Yuvraj, C.; Aranganathan, V.: Isolation and identification of prospective dissimilatory iron reducing bacteria for electricity generation in microbial fuel cell. Int. J Adv. Lif. Sci. 8(3), 300–306 (2015)Google Scholar
  8. 8.
    Yuvraj, C.; Aranganathan, V.: Enhancement of voltage generation using isolated dissimilatory iron-reducing (DIR) bacteria Klebsiella pneumoniae in microbial fuel cell. Arab. J. Sci. Eng. (2016). doi: 10.1007/s13369-016-2108-4
  9. 9.
    Reguera, G.; McCarthy, K.D.; Mehta, T.; Nicoll, J.S.; Tuominen, M.T.; Lovley, D.R.: Extracellular electron transfer via microbial nanowires. Nature 435(7045), 1098–1101 (2005)CrossRefGoogle Scholar
  10. 10.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)CrossRefGoogle Scholar
  11. 11.
    Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193(1), 265–275 (1951)Google Scholar
  12. 12.
    Aelterman, P.; Freguia, S.; Keller, J.; Verstraete, W.; Rabaey, K.: The anode potential regulates bacterial activity in microbial fuel cells. Appl. Environ. Microbiol. 78(3), 409–418 (2008)Google Scholar
  13. 13.
    Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Rabaey, K.: Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40(17), 5181–5192 (2006)CrossRefGoogle Scholar
  14. 14.
    Richter, H.; McCarthy, K.; Nevin, K.P.; Johnson, J.P.; Rotello, V.M.; Lovley, D.R.: Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 24(8), 4376–4379 (2008)CrossRefGoogle Scholar
  15. 15.
    Zhang, L.; Zhou, S.; Zhuang, L.; Li, W.; Zhang, J.; Lu, N.; Deng, L.: Microbial fuel cell based on Klebsiella pneumoniae biofilm. Electrochem. Commun. 10(10), 1641–1643 (2008)CrossRefGoogle Scholar
  16. 16.
    Findlay, R.H.; King, G.M.; Watling, L.: Efficacy of phospholipid analysis in determining microbial biomass in sediments. Appl. Environ. Microbiol. 55(11), 2888–2893 (1989)Google Scholar
  17. 17.
    Ahimou, F.; Semmens, M.J.; Novak, P.J.; Haugstad, G.: Biofilm cohesiveness measurement using a novel atomic force microscopy methodology. Appl. Environ. Microbiol. 73(9), 2897–2904 (2007)CrossRefGoogle Scholar
  18. 18.
    Wicker-Böckelmann, U.; Wingender, J.; Winkler, U.K.: Alginate lyase releases cell-bound lipase from mucoid strains of Pseudomonas aeruginosa. Zbl. Bakt Int. J. Med. M. 266(3), 379–389 (1987)Google Scholar
  19. 19.
    Albelo, S.T.; Domenech, C.E.: Carbons from choline present in the phospholipids of Pseudomonas aeruginosa. FEMS Microbiol. Lett. 156(2), 271–274 (1997)CrossRefGoogle Scholar
  20. 20.
    Allison, D.G.: Exopolysaccharide production in bacterial biofilms. Biofilm J. 3(1), 1–19 (1998)MathSciNetGoogle Scholar
  21. 21.
    Flemming, H.C.; Wingender, J.; Mayer, C.; Korstgens, V.; Borchard, W.: (2000). Cohesiveness in biofilm matrix polymers. In Symposia-Society for General Microbiology (pp. 87–106). Cambridge University Press, Cambridge (1999).Google Scholar
  22. 22.
    Baranitharan, E.; Khan, M.R.; Prasad, D.M.R.: Treatment of palm oil mill effluent in microbial fuel cell using polyacrylonitrile carbon felt as electrode. J Med. Biol. Eng. 2(4), 252–256 (2013)Google Scholar
  23. 23.
    Khater, D.; El-khatib, K.M.; Hazaa, M.; Hassan, R.Y.: Electricity generation using Glucose as substrate in microbial fuel cell. J. Bas. Environ. Sci. 2, 84–98 (2015)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.Department of BiochemistryJain UniversityBangaloreIndia

Personalised recommendations