Skip to main content

Production of Single Cell Protein and Polyhydroxyalkanoate from Carica papaya Waste

Abstract

Carica papaya waste represents an ideal candidate for production of single cell proteins (SCP) and polyhydroxyalkanoates (PHA) due to its high carbohydrate content. Bioconversion of papaya waste in to microbial biomass protein or SCP and PHA paves way to tackle global issues raised due to protein caloric malnutrition and synthetic plastic disposal, respectively. In this work, acid hydrolyzed papaya waste was employed as substrate for PHA and SCP production. Maximum PHA production (4.2 g/L) was observed with papaya peel under optimized conditions of temperature (37 \({^{\circ }}\)C), pH (7), carbon source (sucrose) and nitrogen source (ammonium sulfate) on 72 h of fermentation using Bacillus subtilis NCDC0671. The extracted polymer was characterized through FTIR spectroscopy. SCP production using Saccharomyces cerevisiae NDRI 364 was sequentially optimized for maximizing biomass yield. Maximum SCP production was achieved at 25 \({^{\circ }}\)C (4.67 g/L), pH 5 (4.65 g/L), incubation period of 120 h (4.86 g/L). Screening for best carbon and nitrogen source revealed that maximum SCP was produced using sucrose (4.26 g/L) and beef extract (4.56 g/L) as carbon and nitrogen source, respectively. HPTLC profile of the SCP revealed a significant amount of both essential and non-essential amino acids suggesting its possible incorporation as a feed ingredient.

This is a preview of subscription content, access via your institution.

References

  1. FAO: The State of Food Insecurity in the World: The Multiple Dimensions of Food Security. Food and Agriculture Organization, United Nations, Rome (2013)

  2. King, M.; King, F.: Primary Child Care: A Manual for Health Care Workers Book One and Two. Oxford Medical Publications, Toronto (1991)

    Google Scholar 

  3. Steinbtichel, A.; Liike-Eversloh, T.: Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. 16, 81–96 (2003)

    Article  Google Scholar 

  4. Anupama, A.; Ravindra, P.: Value added food: single cell protein. Biotechnol. Adv. J. Microbiol. 18, 459–479 (2000)

    Article  Google Scholar 

  5. Asad, M.J.; Asghar, M.; Yaqub, M.; Shahzad, K.: Production of single cell protein from delignified corn cob Arachniotus species. Pak. J. Agric. Sci. 37, 3–4 (2000)

    Google Scholar 

  6. Sing, G.; Kumari, A.; Mittal, A.; Goel, V.; Yadav, A.; Aggarwal, N.K.: Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper and cardboard industry waste water. BioMed. Res. Int. pp. 1–10 (2013)

  7. Uchakalwar, P.R.; Chandak, A.M.: Production of single cell protein from fruits waste by Saccharomyces cerevisiae. Int. J. Adv. Biotechnol. Res. 5, 770–776 (2014)

    Google Scholar 

  8. Maragatham, C.; Panneerselvam, A.: Production of single cell protein from yeast using papaya extract medium. Adv. Appl. Sci. Res. 2, 14–18 (2011)

    Google Scholar 

  9. Bekatorou, A.; Psarianos, C.; Kouti-nas, A.A.: Production of food grade yeasts. Biopolymers 44, 407–415 (2006)

    Google Scholar 

  10. Sauerwein, H.; Schmitz, S.; Hiss, S.: Effects of a dietary application of a yeast cell wall extract on innate and acquired immunity on oxidative status and growth performance in weanling piglets and on the ileal epithelium in fattened pigs. J. Anim. Physiol. Anim. Nutr. 91, 369–380 (2007)

    Article  Google Scholar 

  11. Singh, M.; Patel K. S.S.; Kalia, V, C.: Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb. Cell Fact. 8, pp. 1–11.

  12. APHA; AWWA; WEF: Standard Methods for the Examination of Water and Waste Water. (21st edn.), Washington DC (2005)

  13. AOAC: Official methods of analysis of A.O.A.C. In: Helirich, K. (ed.), (18th edn.) Association of Official Analytical Chemists, Inc., Arlington (2005)

  14. Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  15. Hedge, J.E.; Hofreiter, B.T.: In: Whistler, R.L.; Be Miller, J.N. (eds.) Carbohydrate Chemistry 17, Academic Press, New York (1962)

  16. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–427 (1959)

    Article  Google Scholar 

  17. Oloyede, O.L.: Chemical profile of unripe pulp of Carica papaya. PJN 4, 379–381 (2005)

    Article  Google Scholar 

  18. Zaman, W.; Biswas, S.K.; Helali, M.O.H.; Ibrahim, M.; Hassan, P.: Physico-chemical composition of four papaya varieties grown at Rajshahi. J. Bio-Sci. 14, 83–86 (2006)

    Google Scholar 

  19. Nwofia, G.E.; Ojimelukwe, P.; Eji, C.: Chemical composition of leaves, fruit pulp and seeds in some Carica papaya (L) morphotypes. Int. J. Med. Aromat. Plants 2, 200–206 (2012)

    Google Scholar 

  20. Pumiput, P.; Chuntranuluck, S.; Kitpreechavanich, V.; Punsuron, V.; Vaithanomstat, P.: Production process of hydrolysate from steam explosion of oil trunk for xylitol fermentation. Kasetsart J. 42, 73–78 (2008)

    Google Scholar 

  21. Phaff, H.J.; Miller, M.W.; Mrak, E.M.: The Life of Yeasts, 2nd edn. Harvard University Press, London (1996)

    Google Scholar 

  22. Kurbanoglu, E.B.; Algur, O.F.: Single cell protein production from ram horn hydrolysate by bacteria. Bioresour. Technol. 85, 125–129 (2002)

    Article  Google Scholar 

  23. Muralidharan, R.; Radha, K.V.: A kinetic study on polyhdroxybutrate production on nitrogen limited medium using Bacillus subtilis MTCC9763 through a two stage cultivation strategy. J. Env. Biol. 36, 537–542 (2014)

    Google Scholar 

  24. Santhanam, A.; Sasidharan, S.: Microbial production of PHA from Alcaligens spp. and Pseudomonas oleovorans using different carbon sources. Afr. J. Biotechnol. 9, 3144–3150 (2010)

    Google Scholar 

  25. Hess, B.; Sherma, J.: Quantification of arginine in dietary supplement tablets and capsules by silica gel high performance thin layer chromatography with visible mode densitometry. Acta Chromatogr. 14, 60–69 (2004)

    Google Scholar 

  26. Olevieria, F.; Dias, C.; Castilho, L.R.; Freire, M.G.: Characterization of poly (3-hydroxybutyrate) produced by Cupriavidus necator in solid-state fermentation. Bioresour. Technol. 98, 633–638 (2007)

    Article  Google Scholar 

  27. Pandian, S.R.; Deepak, V.; Kalishwaralal, K.; Rameshkumar, N.; Jeyaraj, M.; Gurunathan, S.: Optimization and fed-batch production of PHB utilizing dairy waste and sea water as nutrient sources by Bacillus megaterium SRKP-3. Bioresour. Technol. 101, 705–711 (2010)

    Article  Google Scholar 

  28. Chi, Z.M.; Zhao, S.Z.: Optimization of medium and cultivation condition for pullulan production by new pullulan-producing yeast strain. Enzyme Microb. Technol. 33, 206–211 (2003)

    Article  Google Scholar 

  29. Inagraham, J.L.: Temperature relationships. In: Gunsalus, I.C., Stanier, R.Y. (eds.) The Bacteria, pp. 265–296. Academic Press, New York and London (1962)

    Google Scholar 

  30. Precht, H.; Christophersen, J.; Hensel, H.; Larcher, W.: Temperature and life. Springer Publication, Heidelberg (1973)

    Book  Google Scholar 

  31. Charoenchai, C.; Fleet, G.; Henschke, P.A.: Effects of temperature, pH and sugar concentration on the growth rates and cell biomass of wine yeasts. Am. J. Enol. Vitic. 49, 283–288 (1998)

  32. Ritchie, F.; Bain, R.A.; McQuilken, M.P.: Effects of nutrient status, temperature and pH on mycelial growth, sclerotial production and germination of Rhizoctonia solani from potato. J. Plant Pathol. 91, 589–596 (2009)

    Google Scholar 

  33. Raimbault, M.; Alazard, D.: Cultural method to study fungal growth in solid fermentation. Eur. J. Appl. Microbiol. Biotechnol. 9, 199–209 (1980)

    Article  Google Scholar 

  34. Khare, S.K.; Jha, K.; Gandhi, A.P.: Glucomylase production by solid state fermentation from soypulp (okara). J. Dairy. foods HSci. 17, 85–90 (1998)

    Google Scholar 

  35. Yousufi, M.K.: Impact of pH on the single cell protein produced on okara-wheat grit substrates using Rhizopus oligosporus and Aspergillus oryzae. IOSR J. Environ. Sci. Toxicol. Food Technol. 1, 32–35 (2012)

    Article  Google Scholar 

  36. Ravinder, R.; Linga, V.R.; Pogaku, R.: Production of SCP from deoiled rice bran. Food Technol. Biotechnol. 41, 243–246 (2003)

    Google Scholar 

  37. Handy, H.H.: Production of mini food by Aspergillus niger, Rhizopus oryzae and Saccharomyces cerevisiae using orange peel. Rom. Biotechnol. Lett. 18, 7924–7946 (2013)

    Google Scholar 

  38. Casida, L.E.: Industrial Microbiology. Chapter 7. New Age International (P) Limited, New Delhi (1968)

    Google Scholar 

  39. Stanbury, P.F.; Whitaker, A.; Hall, S.J.: Principles of Fermentation Technology, 2nd edn. Butterworth-Heinemann, Oxford (1995)

    Google Scholar 

  40. Malherbe, S.; Bauer, F.F.; Du Toit, M.: Understanding problem fermentation—a review. S. Afr. J. Enol. Vitic. 28, 169–185 (2007)

    Google Scholar 

  41. Borah, B.; Thakur, P.S.; Nigam, J.N.: The influence of nutritional and environmental conditions on the accumulation of poly-I3-hydroxybutyrate in Bacillus mycoides RLJ B-017. J. Appl. Microbiol. 92, 776–783 (2002)

    Article  Google Scholar 

  42. Kumar, T.; Singh, M.; Purohit, H.J.; Kalia, V.C.: Potential of Bacillus sp. To produce polyhydroxybutyrate from biowaste. J. Appl. Microbiol. 106, 2017–2023 (2009)

    Article  Google Scholar 

  43. Wu, Q.; Huang, H.H.; Hu, G.H.; Chen, J.C.; Ho, K.P.; Chen, G.Q.: Production of poly-3-hydroxybutyrate by Bacillus sp. JMa5 cultivated in molasses media. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 80, 111–118 (2001)

    Article  Google Scholar 

  44. Hori, K.; Kaneko, M.; Tanji, Y.; Xing, X.; Unnu, H.: Construction of self disruptive Bacillus megaterium in response to substrate exhaustion for polyhydroxybutyrate production. Appl. Microbiol. Biotechnol. 59, 211–216 (2002)

    Article  Google Scholar 

  45. Khanna, S.; Srivastava, A.K.: Statistical media optimization studies for growth and PHB production by Ralstonia eutropha. Process Biochem. 40, 2173–2182 (2005)

    Article  Google Scholar 

  46. Koutinas, A.A.; Xu, Y.; Wang, R.; Webb, C.: Polyhydroxybutyrate production from a novel feedstock derived from a wheatbased biorefinery. Enzyme Microbiol. Technol. 40(5), 1035–1104 (2007)

    Article  Google Scholar 

  47. Kim, M.; Baek, J.; Lee, J.K.: Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. Int. J. Hydrogen Energy 31(1), 121–127 (2006)

    Article  Google Scholar 

  48. Naumann, D.; Helm, D.; Labischinski, H.: Microbiological characterizations by FT-IR spectroscopy. Nature 351, 81–83 (1991)

    Article  Google Scholar 

  49. Shah, K.R.: FTIR analysis of polyhydroxyalkonates by novel Bacillus sp. AS 3-2 from soil of kadi region, North Gujarat, India. J. Biochem. Technol. 3, 380–383 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mridul Umesh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 236 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Umesh, M., Priyanka, K., Thazeem, B. et al. Production of Single Cell Protein and Polyhydroxyalkanoate from Carica papaya Waste. Arab J Sci Eng 42, 2361–2369 (2017). https://doi.org/10.1007/s13369-017-2519-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2519-x

Keywords

  • Polyhydroxyalkanoate
  • Single cell protein
  • Fourier transform infrared spectroscopy
  • High-performance thin-layer chromatography