Skip to main content

New Hybrid PCA-Based Facial Age Estimation Using Inter-Age Group Variation-Based Hierarchical Classifier

Abstract

In this paper, we propose hybrid principal component analysis (HPCA) to extract appearance feature of a face and inter-age group variation-based classifier (IAGVC) with regression to estimate age of a person. The proposed age estimation system is robust and less sensitive to outliers where nonuniform distribution of images at different age groups is existing. Under HPCA, we introduce two novel methods, extended SpPCA and extended SubXPCA. The issues, such as summarization of variance, variable component selection, computational complexity and classification accuracy of HPCA, have been addressed as well. The proposed HPCA operates on subpattern and whole pattern at a time and extracts appearance feature based on both local and global variation of faces. The IAGVC uses HPCA-based hybrid Eigen spaces of each training age group to estimate age group of a test image, and subsequently, support vector regressor estimates the specific age in the selective age group. The experimental results on FG-NET aging database show that the proposed HPCA-based IAGVC has better classification accuracy as compared to existing classical PCA, local SpPCA and SubXPCA over all age groups.

This is a preview of subscription content, access via your institution.

References

  1. Yun, F.; Guo, G.; Huang, T.S.: Age synthesis and estimation via faces: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 1955–1976 (2010)

    Article  Google Scholar 

  2. Lanitis, A.; Draganova, C.; Christodoulou, C.: Comparing different classifiers for automatic age estimation. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(1), 621–628 (2004)

    Article  Google Scholar 

  3. Han, H.; Otto, C.; Jain, A.K.: Age estimation from face images: human vs. machine performance. In: International Conference on Biometrics (ICB), pp. 1–8 (2013)

  4. Geng, X.; Zhi-Hua Zhou, K.; Smith-Miles., K.: Automatic age estimation based on facial aging patterns. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2234–2240 (2007)

    Article  Google Scholar 

  5. Han, H.; Otto, C.; Liu, X.; Jain, A.K.: Demographic estimation from face images: human vs. machine performance. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1148–1161 (2015)

    Article  Google Scholar 

  6. Choi, S.E.; Lee, Y.J.; Lee, S.J.; Park, K.R.; Kim, J.: Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recognit. 44(6), 1262–1281 (2011)

    Article  MATH  Google Scholar 

  7. Cootes, T.F.; Edwards, G.J.; Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

    Article  Google Scholar 

  8. Horng, W.-B.; Lee, C.-P.; Chen, C.-W.: Classification of age groups based on facial features. Tamkang J. Sci. Eng. 4(3), 183–192 (2001)

    Google Scholar 

  9. Sai, P.-K.; Wang, J.-G.; Teoh, E.-K.: Facial age range estimation with extreme learning machines. Neurocomputing 149, 364–372 (2015)

    Article  Google Scholar 

  10. Geng, X.; Yin, C.; Zhou, Z.-H.: Facial age estimation by learning from label distributions. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2401–2412 (2013)

    Article  Google Scholar 

  11. Yan, S.; Wang, H.; Tang, X.; Huang, T.S.: Learning auto-structured regressor from uncertain nonnegative labels. In: IEEE 11th International Conference on Computer Vision (ICCV), pp. 1–8. IEEE (2007)

  12. Li, Z.; Gong, D.; Li, X.; Tao, D.: Aging face recognition: a hierarchical learning model based on local patterns selection. IEEE Trans. Image Process. 25(5), 2146–2154 (2016)

    MathSciNet  Article  Google Scholar 

  13. Thukral, P.; Mitra, K.; Chellappa, R.: A hierarchical approach for human age estimation. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1529–1532. IEEE (2012)

  14. Panis, G.; Lanitis, A.; Tsapatsoulis, N.; Cootes, T.F.: Overview of research on facial ageing using the fg-net ageing database. IET Biom. 5(2), 37–46 (2016)

  15. Raudys, S.J.; Jain, A.K.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 3, 252–264 (1991)

    Article  Google Scholar 

  16. Duda, R.O.; Hart, P.E.; Stork, D.G.: Pattern Classification. Wiley, New York (2012)

    MATH  Google Scholar 

  17. Guo, G.; Fu, Y.; Dyer, C.R.; Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. Image Process. 17(7), 1178–1188 (2008)

    MathSciNet  Article  Google Scholar 

  18. Guo, G.; Fu, Y.; Dyer, C.R.; Huang, T.S.: A probabilistic fusion approach to human age prediction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1–6 (2008)

  19. Chen, C.; Chang, Y.; Ricanek, K.; Wang, Y.: Face age estimation using model selection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops, pp 93–99 (2010)

  20. Chang, K.Y.; Chen, C.S.; Hung, Y.P.: Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 585–592 (2011)

  21. Chang, K.Y.; Chen, C.S.; Hung, Y.P.: A ranking approach for human ages estimation based on face images. In: 20th International Conference on Pattern Recognition (ICPR), pp. 3396–3399 (2010)

  22. Yin, C.; Geng, X.: Facial age estimation by conditional probability neural network. In: Chinese Conference on Pattern Recognition, pp. 243–250. Springer, Heidelberg (2012)

  23. Gao, D.; Pan, L.; Liu, R.; Chen, R.; Xie, M.: Correlated warped Gaussian processes for gender-specific age estimation. In: IEEE International Conference on Image Processing (ICIP), pp. 133–137. IEEE (2015)

  24. Chao, W.-L.; Liu, J.-Z.; Ding, J.-J.: Facial age estimation based on label-sensitive learning and age-oriented regression. Pattern Recognit. 46(3), 628–641 (2013)

    Article  Google Scholar 

  25. Weng, R.; Lu, J.; Yang, G.; Tan, Y.-P.: Multi-feature ordinal ranking for facial age estimation. In: 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–6. IEEE (2013)

  26. Turk, M.; Pentland, A.: Eigenfaces for recognition. J. Cognit. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  27. Chen, S.; Zhu, Y.: Subpattern-based principle component analysis. Pattern Recognit. 37(5), 1081–1083 (2004)

    Article  Google Scholar 

  28. Kumar, K.V.; Negi, A.: Subxpca and a generalized feature partitioning approach to principal component analysis. Pattern Recognit. 41(4), 1398–1409 (2008)

    Article  MATH  Google Scholar 

  29. Negi, A.; Kadappa, V.K.: SubXPCA versus PCA: a theoretical investigation. In: 20th International Conference on Pattern Recognition (ICPR), pp. 4170–4173. IEEE (2010)

  30. Negi, A.; Kadappa, V.: An investigation on recent advances in feature partitioning based principal component analysis methods. In: Second Vaagdevi International Conference on Information Technology for Real World Problems (VCON), pp. 90–95. IEEE (2010)

  31. Lian, H.-C.; Lu, B.-L.: Age estimation using a min-max modular support vector machine. In: Twelfth International Conference on Neural Information Processing, pp. 83–88 (2005)

  32. Gao, F.; Ai, H.: Face age classification on consumer images with gabor feature and fuzzy lda method. In: Advances in Biometrics, pp. 132–141. Springer (2009)

  33. Günay, A.; Nabiyev, V.V.: Automatic age classification with LBP. In: 23rd International Symposium on Computer and Information Sciences, pp. 1–4. IEEE (2008)

  34. Lanitis, A.; Taylor, C.J.; Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 442–455 (2002)

    Article  Google Scholar 

  35. Guo, G.; Mu, G.; Fu, Y.; Huang, T. S.: Human age estimation using bio-inspired features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 112–119. IEEE (2009)

  36. Liang, Y.; Wang, X.; Zhang, L.; Wang, Z.: A hierarchical framework for facial age estimation. Math. Probl. Eng. 2014 (2014). doi:10.1155/2014/242846

  37. Geng, X.; Zhou, Z.-H.; Zhang, Y.; Li, G.; Dai, H.: Learning from facial aging patterns for automatic age estimation. In: 14th annual ACM international conference on Multimedia, pp. 307–316. ACM (2006)

  38. Lal, S.; Chandra, M.: Efficient algorithm for contrast enhancement of natural images. Int. Arab J. Inf. Technol. 11(1), 95–102 (2014)

    Google Scholar 

  39. Kwon, Y.H.: Age classification from facial images. In: IEEE confrence on Computer Vision and Pattern Recognition (CVPR), Computer Society Conference, pp. 762–767. IEEE (1994).

  40. Schwind, V.: The golden ratio in 3D human face modeling. Stuttgart Media University, Stuttgart (2011)

  41. Ross, A.; Govindarajan, R.: Feature level fusion in biometric systems. In: Biometric Consortium Conference (BCC) (2004)

  42. Ross, A.; Jain, A.: Information fusion in biometrics. Pattern Recognit. Lett. 24(13), 2115–2125 (2003)

    Article  Google Scholar 

  43. Gauch Jr., H.G.: Noise reduction by eigenvector ordinations. Ecology 63, 1643–1649 (1982)

    Article  Google Scholar 

  44. Jolliffe, I.: Principal Component Analysis. Wiley Online Library, New York (2002)

    MATH  Google Scholar 

  45. Johnson, R.A.; Wichern, D.W.; et al.: Applied Multivariate Statistical Analysis, vol. 4. Prentice Hall, Englewood Cliffs, NJ (1992)

  46. Zhang, Y.; Yeung, D.-Y.: Multi-task warped Gaussian process for personalized age estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2622–2629. IEEE (2010)

  47. Si, J.; Feng, J.; Bu, Q.; Sun, X.; He, X.; Qiu, S.: Age estimation based on canonical correlation analysis and extreme learning machine. In: Chinese Conference on Biometric Recognition, pp. 677–685. Springer (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Sahoo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahoo, T.K., Banka, H. New Hybrid PCA-Based Facial Age Estimation Using Inter-Age Group Variation-Based Hierarchical Classifier. Arab J Sci Eng 42, 3337–3355 (2017). https://doi.org/10.1007/s13369-017-2493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2493-3

Keywords

  • Face recognition
  • Age estimation
  • Hybrid PCA
  • Inter-group variation