Skip to main content
Log in

Characterization of Alkali-Induced Quartz Dissolution Rates and Morphologies

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A number of studies have investigated the impact of alkali cations on quartz dissolution to increase the understanding of natural rock weathering and enhance the predictability of silica behaviour in reservoir systems. However, there are few evidences for how alkali cations approach the quartz surface. Thus, this study is an attempt to provide empirical evidence on the interaction of electrolytes (\(\hbox {Na}^{+}, \hbox {K}^{+}, \hbox {Ca}^{2+})\) with quartz surface. Bulk quartz grains and clean-faced single quartz crystals were dissolved/etched in varying pH solutions of acidic, near-neutral/neutral and alkali solutions (KOH, NaOH, KCl, NaCl, \(\hbox {CaCl}_{2}, \hbox {CH}_{3}\hbox {COOH}\), HCl). The amount of dissolved silica was measured with molybdate spectrophotometry method, while variations in quartz surface morphology were studied using scanning electron microscopy attached with EDX. Quartz dissolution rates varied with pH, hydrated radius and hydrolysis constants of alkali cations in the order: \(\hbox {Ca}^{2+}<\hbox {Na}^{+}<\hbox {K}^{+}\). Relatively deeper triangular etch pits were observed in quartz dissolved in KOH and NaOH solutions, while shallower pits formed in neutral solutions, and exsolution faces and lamellae were formed in quartz dissolved in low-pH solutions. The results also showed that interfacial secondary phases of cationic silicates play a key role in quartz dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nesbitt, H.W.; Young, G.M.: Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta 48, 1523–1534 (1984)

    Article  Google Scholar 

  2. Rimstidt, J.D.: Rate equations for sodium catalyzed quartz dissolution. Geochim. Cosmochim. Acta 167, 195–204 (2015)

    Article  Google Scholar 

  3. White, A.F.; Brantley, S.L.: The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem. Geol. 202, 479–506 (2003)

    Article  Google Scholar 

  4. Brantley, S.L.; Crane, S.R.; Crerar, D.; Hellmann, R.; Stallard, R.: Dissolution at dislocation etch pits in quartz. Geochim. Cosmochim. Acta 50, 2349–2361 (1986a)

    Article  Google Scholar 

  5. Zhang, S.T.; Liu, Y.: Molecular-level mechanisms of quartz dissolution under neutral and alkaline conditions in the presence of electrolytes. Geochem. J. 48, 189–205 (2014)

    Article  Google Scholar 

  6. Kassab, M.A.; Hassanain, I.M.; Salem, A.M.: Petrography, diagenesis and reservoir characteristics of the Pre-Cenomanian sandstone, Sheikh Attia area, East Central Sinai, Egypt. J. Afr. Earth Sci. 96, 122–138 (2014)

    Article  Google Scholar 

  7. Fournier, R.O.: A method of calculating quartz solubilities in aqueous sodium chloride solutions. Geochim. Cosmochim. Acta 47, 579–586 (1983)

    Article  Google Scholar 

  8. Schnurre, S.M.; Grobner, J.; Schmid-Fetzer, R.: Thermodynamics and phase stability in the Si–O system. J. Non-Cryst. Solids 336, 1–25 (2004)

    Article  Google Scholar 

  9. Dove, P.M.; Nix, C.J.: The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz. Geochim. Cosmochim. Acta 61, 3329–3340 (1997)

    Article  Google Scholar 

  10. Dove, P.M.; Crerar, D.A.: Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochim. Cosmochim. Acta 54, 955–969 (1990)

    Article  Google Scholar 

  11. Dove, P.M.: The dissolution kinetics of quartz in sodium chloride solutions at 25 to 300 \(^\circ \)C. Am. J. Sci. 294, 665–712 (1994)

    Article  Google Scholar 

  12. Dove, P.M.: Kinetic and thermodynamic controls on silica reactivity in weathering environments. In: White, A.F., Brantley, S.L. (eds.) Chemical Weathering Rates of Silicate Minerals, vol. 31, pp. 236–290. Mineralogical Society of America, Short Course (1995)

  13. Dove, P.M.: The dissolution kinetics of quartz in aqueous mixed cation solutions. Geochim. Cosmochim. Acta 63, 3715–3727 (1999)

    Article  Google Scholar 

  14. Dove, P.M.; Han, N.; De Yoreo, J.J.: Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior. Proc. Natl. Acad. Sci. 102(43), 15357–15362 (2005)

    Article  Google Scholar 

  15. Poirier, J.P.: Creep of Crystals: High-Temperature Deformation Processes in Metals Ceramics and Minerals. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  16. Lasaga, A.C.; Luttge, A.: Variation of crystal dissolution rate based on a dissolution stepwave model. Science 291, 2400–2404 (2001)

    Article  Google Scholar 

  17. Dove, P.M.; Han, N.: Kinetics of mineral dissolution and growth as reciprocal microscopic surface processes across chemical driving force. Am. Inst. Phys. Conf. Ser. 916, 215–234 (2007)

    Google Scholar 

  18. Klevakina, K.; Renner, J.; Doltsinis, N.; Adeagbo, W.: Transport processes at quartz-water interfaces: constraints from hydrothermal grooving experiments. Solid Earth Discuss. 5, 609–654 (2013)

    Article  Google Scholar 

  19. Berger, G.; Cadore, E.; Schott, J.; Dove, P.M.: Dissolution rate of quartz in lead and sodium electrolyte solutions between 25 and 300-degrees-C: effect of the nature of surface complexes and reaction affinity. Geochim. Cosmochim. Acta 58, 541–551 (1994)

    Article  Google Scholar 

  20. Bickmore, B.R.; Nagy, K.L.; Gray, A.K.; Brinkerhoff, A.R.: The effect of Al(OH)\(_{4}\) on the dissolution rate of quartz. Geochim. Cosmochim. Acta 70, 290–305 (2006)

    Article  Google Scholar 

  21. Dove, P.M.; Colin, M.C.: Surface charge density on silica in alkali and alkaline earth chloride electrolyte solutions. Geochim. Cosmochim. Acta 69, 4963–4970 (2005)

    Article  Google Scholar 

  22. Nangia, S.; Washton, N.M.; Mueller, K.T.; Kubicki, J.D.; Garrison, B.J.: Study of a family of 40 hydroxylated \(\beta \)-cristobalite surfaces using empirical potential energy functions. J. Phys. Chem. C 111, 5169 (2007)

    Article  Google Scholar 

  23. Wallace, A.F.; Gibbs, G.V.; Dove, P.M.: Influence of ion-associated water on the hydrolysis of Si–O bonded interactions. J. Phys. Chem. A 114, 2534–2542 (2010)

    Article  Google Scholar 

  24. Davis, M.C.; Wesolowski, D.J.; Rosenqvist, J.; Brantley, S.; Mueller, K.T.: Solubility and near-equilibrium dissolution rates of quartz in dilute NaCl solutions at 398–473 K under alkaline conditions. Geochim. Cosmochim. Acta 75, 401–415 (2011)

    Article  Google Scholar 

  25. Kamiya, H.; Shimokata, K.: The role of salts in the dissolution of powdered quartz. In: Cadek, J., Paces, T. (eds.) Proceedings of lnternational Symposium of Water-Rock Interaction, pp. 426–429. Czechoslovakian Geological Survey (1976)

  26. Barker, P.; Fontes, J.C.; Gasse, F.; Druart, J.C.: Experimental dissolution of diatom silica in concentrated salt solutions and implications for paleoenviromental reconstruction. Limnol. Oceanogr. 39, 99–110 (1994)

    Article  Google Scholar 

  27. Yanina, S.V.; Rosso, K.M.; Meakin, P.: Defect distribution and dissolution morphologies on low-index surfaces of \(\alpha \)-quartz. Geochim. Cosmochim. Acta 70, 1113–1127 (2006)

    Article  Google Scholar 

  28. Armstrong-Altrin, J.S.; Natalhy-Pineda, O.: Microtextures of detrital sand grains from the Tecolutla, Nautla, and Veracruz beaches, western Gulf of Mexico, Mexico: implications for depositional environment and paleoclimate. Arab. J. Geosci. 7, 4321–4333 (2013)

    Article  Google Scholar 

  29. Strickland, J.D.H.; Parsons, T.R.: A practical handbook of sea water analysis. Bull. Fish. Res. Board Can. 167, 310 (1968)

    Google Scholar 

  30. Conway, B.E.: Ionic Hydration in Chemistry and Biophysics. Elsevier, Amsterdam (1981)

    Google Scholar 

  31. Dove, P.M.; Elston, S.F.: Dissolution kinetics of quartz in sodium chloride solutions: analysis of existing data and a rate model for \(25\,^{\circ }\)C. Geochim. Cosmochim. Acta 56, 4147–4156 (1992)

    Article  Google Scholar 

  32. Dove, P.M.; Czank, C.A.: Crystal chemical controls on the dissolution kinetics of the isostructural sulfates: celestite, anglesite, and barite. Geochim. Cosmochim. Acta 59, 1907–1915 (1995)

    Article  Google Scholar 

  33. Harouiya, N.; Oelkers, E.H.: An experimental study of the effect of aqueous fluoride on quartz and alkali-feldspar dissolution rates. Chem. Geol. 205, 155–167 (2004)

    Article  Google Scholar 

  34. Iler, R.K.: Coagulation of colloidal silica by calcium ions, mechanism, and effect of particle size. J. Colloid Interface Sci. 53, 476–488 (1975)

    Article  Google Scholar 

  35. Xiao, Y.T.; Lasaga, A.C.: Ab-initio quantum-mechanical studies of the kinetics and mechanisms of silicate dissolution: H\(^{+}\)(H\(_{3}\)O\(^{+})\) catalysis. Geochim. Cosmochim. Acta 58, 5379–5400 (1994)

    Article  Google Scholar 

  36. Xiao, Y.; Lasaga, A.C.: Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH catalysis. Geochim. Cosmochim. Acta 60, 2283–2295 (1996)

    Article  Google Scholar 

  37. Pelmenschikov, A.; Strandh, H.; Pettersson, L.G.M.; Leszczynski, J.: Lattice resistance to hydrolysis of Si–O–Si bonds of silicate minerals: ab initio calculations of a single water attack onto the (001) and (111) b-cristobalite surfaces. J. Phys. Chem. B 104, 5779–5783 (2000)

    Article  Google Scholar 

  38. Ostapenko, G.T.; Tarashchan, A.N.; Mitsyuk, B.M.: Rutile-quartz geothermobarometer. Geochem. Int. 45, 506–508 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.M., Padmanabhan, E. & Baioumy, H. Characterization of Alkali-Induced Quartz Dissolution Rates and Morphologies. Arab J Sci Eng 42, 2501–2513 (2017). https://doi.org/10.1007/s13369-017-2483-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2483-5

Keywords

Navigation