Skip to main content
Log in

A Novel FFTA for Handwashing Process to Maintain Hygiene with Events Following Different Membership Function

  • Research Article - Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

To develop a food safety management system for healthcare, implementation of a proper handwashing technique could play a vital role. In general, the data representing occurrence of faults in handwashing process are incomplete, uncertain and following different probability density functions. In these conditions, faults in handwashing process cannot be fully analysed under uncertain environment by using traditional methods. So, this paper presents a novel fuzzy fault tree analysis method for handwashing process to control hygiene in developing an economic food safety management system under uncertain environment. This method applies fault tree, different fuzzy membership function, \(\alpha \)-cut set and approximate fuzzy arithmetic operations using \(T_\omega \) norm for obtaining fuzzy failure probability of handwashing process. The effectiveness of the presented method is illustrated by comparing the results of existing approaches. Result indicates that the presented approach is a good alternative approach under uncertain environment to the other existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doménech, E.; Escriche, I.; Martorel, S.: Quantification of risks to consumers health and to companys incomes due to failures in food safety. Food Control 18(11), 1419–1427 (2007)

    Article  Google Scholar 

  2. Jumaa, P.A.: Hand hygiene: simple and complex. Int. J. Infect. Dis. 9(1), 3–14 (2005)

    Article  Google Scholar 

  3. Park, A.; Lee, S.J.: Fault tree analysis on handwashing for hygiene management. Food Control 20, 223–229 (2009)

    Article  Google Scholar 

  4. Raheja, D.; Escano, M.C.: Reducing patient healthcare safety risks through fault tree analysis. J. Syst. Saf. 45(5), 13–15 (2009)

  5. World Health Organization: WHO Guidelines on Hand Hygiene in Health Care (Advanced Draft): A Summary (2005). http://www.who.int/entity/patientsafety/events/05/HHen.

  6. Bertolini, M.; Rizzi, A.; Bevilacqua, M.: An alternative approach to HACCP system implementation. J. Food Eng. 79(4), 1322–1328 (2007)

    Article  Google Scholar 

  7. Cagliano, A.C.; Grimaldi, S.; Rafele, C.: A systemic methodology for risk management in healthcare sector. Saf. Sci. 49, 695–708 (2011)

    Article  Google Scholar 

  8. Nikolic, D.M.; Petrovic, N.; Belic, A.; Rokvic, M.; Radakovic, J.A.; Tubic, V.: The fault tree analysis of infectious medical waste management. J. Clean. Prod. 113, 365–373 (2016)

    Article  Google Scholar 

  9. Abecassis, Z.A.; McElroy, L.M.; Patel, R.M.; Khorzad, R.; Carroll IV, C.; Mehrotra, S.: Applying fault tree analysis to the prevention of wrong-site surgery. J. Surg. Res. 193(1), 88–94 (2015)

    Article  Google Scholar 

  10. Ferdous, R.; Khan, F.; Veitch, B.; Amyotte, P.R.: Methodology for computer aided fuzzy fault tree analysis. Process Saf. Environ. Prot. 87, 217–226 (2009)

    Article  Google Scholar 

  11. Hyman, W.A.; Johnson, E.: Fault tree analysis of clinical alarms. J. Clin. Eng. 33(2), 85–94 (2008)

  12. Ebeling, C.: An Introduction to Reliability and Maintainability Engineering. McGraw-Hill, New York (2001)

    Google Scholar 

  13. Kales, P.: Reliability: for Technology, Engineering, and Management. Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

  14. Lee, W.S.; Grosh, D.L.; Tillman, F.A.; Lie, C.H.: Fault tree analysis, methods, and applications: a review. IEEE Trans. Reliab. R–34(3), 194–203 (1985)

    Article  MATH  Google Scholar 

  15. Suresh, P.V.; Babar, A.K.; Raj, V.V.: Uncertainty in fault tree analysis: a fuzzy approach. Fuzzy Sets Syst. 83(2), 135–141 (1996)

    Article  Google Scholar 

  16. Zio, E.: Reliability engineering: old problems and new challenges. Reliab. Eng. Syst. Saf. 94, 125–141 (2009)

    Article  Google Scholar 

  17. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  18. Mahmood, Y.A.; Ahmadi, A.; Verma, A.K.; Srividya, A.; Kumar, U.: Fuzzy fault tree analysis: a review of concept and application. Int. J. Syst. Assur. Eng. Manag. 4(1), 19–32 (2013)

    Article  Google Scholar 

  19. Komal, : Fuzzy fault tree analysis for patient safety risk modeling in healthcare under uncertainty. Appl. Soft Comput. 37, 942–951 (2015)

    Article  Google Scholar 

  20. Pedrycz, W.: Why triangular membership functions? Fuzzy Sets and Syst. 64(1), 21–30 (1994)

    Article  MathSciNet  Google Scholar 

  21. Tanaka, H.; Fan, L.T.; Lai, F.S.; Toguchi, K.: Fault-tree analysis by fuzzy probability. IEEE Trans. Reliab. R–32(5), 453–457 (1983)

    Article  MATH  Google Scholar 

  22. Misra, K.B.; Weber, G.G.: A new method for fuzzy fault tree analysis. Microelectron. Reliab. 29(2), 195–216 (1989)

    Article  Google Scholar 

  23. Singer, D.: A fuzzy set approach to fault tree and reliability analysis. Fuzzy Sets Syst. 34(2), 145–155 (1990)

    Article  Google Scholar 

  24. Cheng, C.H.; Mon, D.L.: Fuzzy system reliability analysis by interval of confidence. Fuzzy Sets Syst. 56(1), 29–35 (1993)

    Article  Google Scholar 

  25. Chen, S.M.: Fuzzy system reliability analysis using fuzzy number arithmetic operations. Fuzzy Sets Syst. 64(1), 31–38 (1994)

    Article  MathSciNet  Google Scholar 

  26. Hong, D.H.; Do, H.Y.: Fuzzy system reliability analysis by the use of \(T_\omega \)(the weakest t-norm) on fuzzy number arithmetic operations. Fuzzy Sets Syst. 90(3), 307–316 (1997)

    Article  MathSciNet  Google Scholar 

  27. Fuh, C.F.; Jea, R.; Su, J.S.: Fuzzy system reliability analysis based on level (\(\lambda \),1) interval-valued fuzzy numbers. Inf. Sci. 272, 185–197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, H.Z.; Tong, X.; Zuo, M.J.: Posbist fault tree analysis of coherent systems. Reliab. Eng. Syst. Saf. 84, 141–148 (2004)

    Article  Google Scholar 

  29. Shu, M.H.; Cheng, C.H.; Chang, J.R.: Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly. Microelectron. Reliab. 46, 2139–2148 (2006)

  30. Chang, J.R.; Chang, K.H.; Liao, S.H.; Cheng, C.H.: The reliability of general vague fault tree analysis on weapon systems fault diagnosis. Soft Comput. 10, 531–542 (2006)

  31. Chang, K.H.; Cheng, C.H.; Chang, Y.C.: Reliability assessment of an aircraft propulsion system using IFS and OWA tree. Eng. Optim. 40, 907–921 (2008)

    Article  MathSciNet  Google Scholar 

  32. Kumar, M.; Yadav, S.P.: The weakest \(t\)-norm based intuitionistic fuzzy fault-tree analysis to evaluate system reliability. ISA Trans. 51(4), 531–538 (2012)

    Article  MathSciNet  Google Scholar 

  33. Chowdhury, S.G.; Misra, K.B.: Evaluation of fuzzy reliability of a non-series parallel network. Microelectron. Reliab. 32(1–2), 1–4 (1992)

    Article  Google Scholar 

  34. Mon, D.L.; Cheng, C.H.: Fuzzy system reliability analysis for components with different membership functions. Fuzzy Sets Syst. 64(2), 145–157 (1994)

    Article  MathSciNet  Google Scholar 

  35. Chen, S.M.: New method for fuzzy system reliability analysis. Cybern. Syst.: Int. J. 27(4), 385–401 (1996)

    Article  MATH  Google Scholar 

  36. Chang, K.H.; Cheng, C.H.: A novel general approach to evaluating the PCBA for components with different membership function. Appl. Soft Comput. 9(3), 1044–1056 (2009)

    Article  Google Scholar 

  37. Kumar, M.: Applying weakest \(t\)-norm based approximate fuzzy arithmetic operations on different types of intuitionistic fuzzy numbers to evaluate reliability of PCBA fault. Appl. Soft Comput. 23, 387–406 (2014)

    Article  Google Scholar 

  38. Lin, K.P.; Wen, W.; Chou, C.C.; Jen, C.H.; Hung, K.C.: Applying fuzzy GERT with approximate fuzzy arithmetic based on the weakest \(t\)-norm operations to evaluate repairable reliability. Appl. Math. Model. 235(11), 5314–5325 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lin, K.P.; Wu, M.J.; Hung, K.C.; Kuo, Y.: Developing a \(T_\omega \) (the weakest \(t\)-norm) fuzzy GERT for evaluating uncertain process reliability in semiconductor manufacturing. Appl. Soft Comput. 11(8), 5165–5180 (2011b)

    Article  Google Scholar 

  40. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Kluwer, Boston (2001)

    Book  Google Scholar 

  41. Soman, K.P.; Misra, K.B.: Estimation of parameters of failure distributions with fuzzy data. Int. J. Syst. Sci. 26(3), 659–670 (1995)

    Article  MATH  Google Scholar 

  42. Ross, T.J.: Fuzzy Logic with Engineering Applications, 2nd edn. Wiley, New York (2004)

    MATH  Google Scholar 

  43. Ferdous, R.; Khan, F.; Sadiq, R.; Amyotte, P.; Veitch, B.: Analyzing system safety and risks under uncertainty using a bow-tie diagram: an innovative approach. Process Saf. Environ. Protect. 91, 1–18 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komal A Novel FFTA for Handwashing Process to Maintain Hygiene with Events Following Different Membership Function. Arab J Sci Eng 42, 3007–3019 (2017). https://doi.org/10.1007/s13369-017-2479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2479-1

Keywords

Navigation