Exploring the Potential of 1-Pentanol and Oleic Acid for Optimizing the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Copolymer by Cupriavidus sp. USMAA1020


The potential of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) copolymer production has remained unexplored for Cupriavidus sp. USMAA1020. This study is devoted to a full range exploration on the biosynthesis of polyhydroxyalkanoate (PHA) containing 3HV monomer, from the screening of carbon sources to the optimization of fermentation parameters. Fatty acid (oleic acid) and alcohol (1-pentanol) was found to be the best combination which resulted in high cell dry weight (CDW) (9.4 g/L), as well as high PHA accumulation of 76 wt%. Alcohols were found to be less toxic compared to other 3HV precursors; meanwhile, oleic acid contributed to sufficient amount of acetyl-CoAs as the building block for PHA thus contributing to high PHA content. Improvement was strategized by focusing on 1-pentanol concentration, incubation period and temperature which are the major factors affecting the copolymer production. An optimization study has resulted in high CDW (13.3 g/L) and PHA concentration (10.23 g/L), which increased significantly to 45 and 43%, respectively, compared to pre-optimized culture. This study warrants the usage of oleic acid and 1-pentanol as one of the viable strategies for industrial scale production of P(3HB-co-3HV) copolymer.

This is a preview of subscription content, log in to check access.


  1. 1.

    Loo, C.Y.; Sudesh, K.: Polyhydroxyalkanoates: bio-based microbial plastics and their properties. M. Polym. J. 2, 31–57 (2007)

    Google Scholar 

  2. 2.

    Silva, L.F.; Gomez, J.G.C.; Oliveira, M.S.; Torress, B.B.: Propionic acid metabolism and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HB-co-3HV) production by Burkholderia sp. J. Biotechnol. 76, 165–174 (2000)

    Article  Google Scholar 

  3. 3.

    Zafar, M.; Kumar, S.; Kumar, S.; Dhiman, A.K.: Artificial intelligence based modeling and optimization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production process by using Azohydromonas lata MTCC 2311 from cane molasses supplemented with volatile fatty acids: a genetic algorithm paradigm. Biores. Technol. 104, 631–641 (2012)

    Article  Google Scholar 

  4. 4.

    Sankhla, I.S.; Bhati, R.; Singh, A.K.; Mallick, N.: Poly(3-hydroxybutyrate-\(c\)o-3-hydroxyvalerate) co-polymer production from a local isolate, Brevibacillus invocatus MTCC 9039. Biores. Technol. 109, 1947–1953 (2010)

    Article  Google Scholar 

  5. 5.

    Bhubalan, K.; Lee, W.H.; Loo, C.Y.; Yamamoto, T.; Tsuge, T.; Doi, Y.; Sudesh, K.: Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polym. Degrad. Stab. 93, 17–23 (2008)

    Article  Google Scholar 

  6. 6.

    Chung, S.H.; Choi, G.G.; Kin, H.W.; Rhee, Y.H.: Effect of Levulinic acid on the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha KHB-8862. J. Microbiol. 39, 79–82 (2001)

    Google Scholar 

  7. 7.

    Lo, K.W.; Chua, H.; Lawford, H.; Lo, W.H.; Yu, P.H.F.: Effects of fatty acids on growth and poly-3-hydroxybutyrate production in bacteria. In: Davidson, B.H., Evans, B.R.M., Finkelstein, M., McMillan, J.D. (eds.) Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals, pp. 575–580. Humana Press (2005)

  8. 8.

    João, M.L.D.; Oehmen, A.; Serafim, L.S.; Lemos, P.C.; Ries, M.A.M.; Oliveira, R.: Metabolic modelling of polyhydroxyalkanoates copolymers production by mixed microbial cultures. BMC. Syst. Biol. 2, 59 (2008)

    Article  Google Scholar 

  9. 9.

    Kim, D.; Park, D.S.; Kwon, S.; Chung, M.; Bae, K.; Park, H.Y.; Rhee, Y.: Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolyesters with a high molar fraction of 3-hydroxyvalerate by an insect-symbiotic Burkholderia sp. IS-01. J. Microbiol. 47, 651–656 (2009)

    Article  Google Scholar 

  10. 10.

    Lee, S.Y.: Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49, 1–1410 (1996)

    Article  Google Scholar 

  11. 11.

    Steinbüchel, A.; Füchtenbusch, B.: Bacterial and other biological systems for polyester production. Trends. Biotechnol. 16, 419–427 (1998)

    Article  Google Scholar 

  12. 12.

    Amirul, A.A.; Yahya, A.R.M.; Sudesh, K.; Azizan, M.N.M.; Majid, M.I.A.: Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA1020 isolated from Lake Kulim, Malaysia. Biores. Technol. 99, 4903–4909 (2008)

    Article  Google Scholar 

  13. 13.

    Huong, K.-H.; Yahya, A.R.M.; Amirul, A.A.: Pronounced synergistic influence of mixed substrate cultivation on single step copolymer P(3HB-co-4HB) biosynthesis with a wide range of 4HB monomer composition. J. Chem. Technol. Biotechnol. 89, 1023–1029 (2014)

    Article  Google Scholar 

  14. 14.

    Huong, K.-H.; Kannusamy, S.; Hui, S.L.Y.; Amirul, A.A.: Biosynthetic enhancement of single-stage poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production by manipulating the substrate mixtures. J. Ind. Microbiol. Biotechnol. 42, 1291–1297 (2015)

    Article  Google Scholar 

  15. 15.

    Shantini, K.; Bhubalan, K.; Yahya, A.R.M.; Amirul, A.A.: Productivity increment of biodegradable and biorenewable copolymer containing 3-hydroxyvalerate monomer initiated by alcohols as precursor substrates. J. Chem. Technol. Biotechnol. 88, 1364–1370 (2012)

  16. 16.

    Braunegg, G.; Sonnleitner, B.; Lafferty, R.M.: A rapid gas chromatographic method for the determination of poly-\(\beta \)-hydroxybutyric acid in microbial biomass. Appl. Microbiol. Biotechnol. 6, 29–37 (1978)

    Article  Google Scholar 

  17. 17.

    Loo, C.Y.; Sudesh, K.: Biosynthesis and native granule characteristics of poly(3-hydroxybutyrate-co-3-hydorxyvalerate) in Delftia acidovorans. Int. J. Biol. Macromol. 40, 466–471 (2007)

    Article  Google Scholar 

  18. 18.

    Marangoni, C.; Furigo, A.; Falcão de Aragão, G.M.: Oleic acid improves poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Ralstonia eutropha in inverted sugar and propionic acid. Biotechnol. Lett. 22, 1635–1638 (2000)

    Article  Google Scholar 

  19. 19.

    Steinbuchel, A.; Lutke-Eversloh, T.: Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16, 81–96 (2003)

    Article  Google Scholar 

  20. 20.

    Ramachandran, H.; Iqbal, N.; Sipaut, C.; Abdullah, A.: Biosynthesis and Characterization of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) Terpolymer with Various Monomer Compositions by Cupriavidus sp. USMAA2-4. Appl. Biochem. Biotechnol. 164, 1–11 (2011)

    Article  Google Scholar 

  21. 21.

    Shantini, K.; Yahya, A.R.M.; Amirul, A.A.: Empirical modelling development for integrated process optimization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production. J. Appl. Polym. Sci. 125, 2155–2162 (2012)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. A. Amirul.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huong, K., Shantini, K., Sharmini, R. et al. Exploring the Potential of 1-Pentanol and Oleic Acid for Optimizing the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Copolymer by Cupriavidus sp. USMAA1020. Arab J Sci Eng 42, 2313–2320 (2017). https://doi.org/10.1007/s13369-017-2473-7

Download citation


  • Alcohol
  • Biopolymer
  • Fatty acid
  • Optimization
  • Polyhydroxyalkanoates