Arabian Journal for Science and Engineering

, Volume 42, Issue 8, pp 3325–3335 | Cite as

Node Localization in Wireless Sensor Networks Using Butterfly Optimization Algorithm

Research Article - Computer Engineering and Computer Science

Abstract

Accurate localization of sensor nodes has a strong influence on the performance of a wireless sensor network. In this paper, a node localization scheme using the application of nature-inspired metaheuristic algorithm, i.e., butterfly optimization algorithm, is proposed. In order to validate the proposed scheme, it is simulated on different sizes of sensor networks ranging from 25 to 150 nodes whose distance measurements are corrupted by gaussian noise. The performance of the proposed novel scheme is compared with performance of some well-known schemes such as particle swarm optimization (PSO) algorithm and firefly algorithm (FA). The simulation results indicate that the proposed scheme demonstrates more consistent and accurate location of nodes than the existing PSO- and FA-based node localization schemes.

Keywords

Wireless sensor networks (WSN) Node localization Butterfly optimization algorithm (BOA) Particle swarm optimization (PSO) algorithm Firefly algorithm (FA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)CrossRefGoogle Scholar
  2. 2.
    Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)CrossRefGoogle Scholar
  3. 3.
    Kulkarni, R.V.; Förster, A.; Venayagamoorthy, G.K.: Computational intelligence in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 13(1), 68–96 (2011)CrossRefGoogle Scholar
  4. 4.
    Yick, J.; Mukherjee, B.; Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)CrossRefGoogle Scholar
  5. 5.
    Mao, G.; Fidan, B.; Anderson, B.D.: Wireless sensor network localization techniques. Comput. Netw. 51(10), 2529–2553 (2007)CrossRefMATHGoogle Scholar
  6. 6.
    Wang, J.; Ghosh, R.K.; Das, S.K.: A survey on sensor localization. J. Control Theory Appl. 8(1), 2–11 (2010)CrossRefMATHGoogle Scholar
  7. 7.
    Aspnes, J.; Eren, T.; Goldenberg, D.K.; Morse, A.S.; Whiteley, W.; Yang, Y.R.; Anderson, B.; Belhumeur, P.N.: A theory of network localization. IEEE Trans. Mob. Comput. 5(12), 1663–1678 (2006)CrossRefGoogle Scholar
  8. 8.
    Patwari, N.; Ash, J.N.; Kyperountas, S.; Hero III, A.O.; Moses, R.L.; Correal, N.S.: Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Process. Mag. 22(4), 54–69 (2005)CrossRefGoogle Scholar
  9. 9.
    Hightower, J.; Borriello, G.: Location systems for ubiquitous computing. Computer 8, 57–66 (2001)CrossRefGoogle Scholar
  10. 10.
    Niculescu, D.; Nath, B.: Ad hoc positioning system (APS). In: Global Telecommunications Conference, 2001. GLOBECOM’01. IEEE, vol. 5, pp. 2926–2931 (2001)Google Scholar
  11. 11.
    Rabaey, C.S.J.; Langendoen, K.: Robust positioning algorithms for distributed ad-hoc wireless sensor networks. In: USENIX Technical Annual Conference, pp. 317–327 (2002)Google Scholar
  12. 12.
    Savvides, A.; Park, H.; Srivastava, M.B.: The n-hop multilateration primitive for node localization problems. Mob. Netw. Appl. 8(4), 443–451 (2003)CrossRefGoogle Scholar
  13. 13.
    Doherty, L.; Pister, K.S.; El Ghaoui, L.: Convex position estimation in wireless sensor networks. In: INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings, vol. 3, pp. 1655–1663 (2001)Google Scholar
  14. 14.
    Biswas, P.; Lian, T.-C.; Wang, T.-C.; Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sens. Netw. (TOSN) 2(2), 188–220 (2006)CrossRefGoogle Scholar
  15. 15.
    Liang, T.-C.; Wang, T.-C.; Ye, Y.: A gradient search method to round the semidefinite programming relaxation solution for ad hoc wireless sensor network localization. Sanford University, formal report 5 (2004)Google Scholar
  16. 16.
    Yun, S.; Lee, J.; Chung, W.; Kim, E.; Kim, S.: A soft computing approach to localization in wireless sensor networks. Expert Syst. Appl. 36(4), 7552–7561 (2009)CrossRefGoogle Scholar
  17. 17.
    Harikrishnan, R.; Kumar, V.J.S.; Ponmalar, P.S.: A comparative analysis of intelligent algorithms for localization in wireless sensor networks. Wirel. Pers. Commun. 87(3), 1057–1069 (2016)Google Scholar
  18. 18.
    Kulkarni, R.V.; Venayagamoorthy, G.K.; Cheng, M.X.: Bio-inspired node localization in wireless sensor networks. In: IEEE International Conference on Systems, Man and Cybernetics, 2009. SMC 2009, pp. 205–210 (2009)Google Scholar
  19. 19.
    Gopakumar, A.; Jacob, L.: Localization in wireless sensor networks using particle swarm optimization. In: IET International Conference on Wireless, Mobile and Multimedia Networks, 2008, pp. 227–230 (2008)Google Scholar
  20. 20.
    Harikrishnan, R.; Kumar, V. J. S. and Ponmalar, P. S.: “Firefly algorithm approach for localization in wireless sensor networks,” in Proceedings of 3rd International Conference on Advanced Computing, Networking and Informatics, pp. 209–214, Springer, Berlin (2016)Google Scholar
  21. 21.
    Boukerche, A.; Oliveira, H.A.; Nakamura, E.F.; Loureiro, A.A.: Localization systems for wireless sensor networks. IEEE Wirel. Commun. 14(6), 6–12 (2007)CrossRefGoogle Scholar
  22. 22.
    Vasant, P.: Handbook of research on artificial intelligence techniques and algorithms, vol. 2. Information Science Reference-Imprint of IGI Publishing (2015)Google Scholar
  23. 23.
    Del Valle, Y.; Venayagamoorthy, G.K.; Mohagheghi, S.; Hernandez, J.-C.; Harley, R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evolut. Comput. 12(2), 171–195 (2008)Google Scholar
  24. 24.
    Kulkarni, R.V.; Venayagamoorthy, G.K.: Particle swarm optimization in wireless-sensor networks: a brief survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(2), 262–267 (2011)CrossRefGoogle Scholar
  25. 25.
    Schaefer, R.: Foundations of Global Genetic Optimization. Springer, Berlin (2007)CrossRefMATHGoogle Scholar
  26. 26.
    Arora, S.; Singh, S.: Butterfly algorithm with l‘evy flights for global optimization. In: 2015 International Conference on Signal Processing, Computing and Control (2015 ISPCC) (2015)Google Scholar
  27. 27.
    Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspir. Comput. 2(2), 78–84 (2010)CrossRefGoogle Scholar
  28. 28.
    Cao, S.; Wang, J.; Gu, X.: A wireless sensor network location algorithm based on firefly algorithm. In: AsiaSim 2012, pp. 18–26. Springer, Berlin (2012)Google Scholar
  29. 29.
    Al-Adwani, S.; Elkamel, A.; Duever, T.A.; Yetilmezsoy, K.; Abdul-Wahab, S.A.: A surrogate-based optimization methodology for the optimal design of an air quality monitoring network. Can. J. Chem. Eng. 93(7), 1176–1187 (2015)CrossRefGoogle Scholar
  30. 30.
    Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Beckington (2010)Google Scholar
  31. 31.
    Gupta, S.; Arora, S.: A hybrid firefly algorithm and social spider algorithm for multimodal function. In: Berretti S., Thampi S., Srivastava P. (eds.) Intelligent Systems Technologies and Applications, vol 384. Springer, Cham (2016). doi:10.1007/978-3-319-23036-8_2
  32. 32.
    Arora, S.; Singh, S.; Singh, S.; Sharma, B.: Mutated firefly algorithm. In: 2014 International Conference on Parallel, Distributed and Grid Computing (PDGC), IEEE, pp. 33–38 (2014)Google Scholar
  33. 33.
    Arora, S.; Singh, S.: An improved butterfly optimization algorithm with chaos. J. Intell. Fuzzy Syst. 32(1), 1079–1088 (2017)CrossRefMATHGoogle Scholar
  34. 34.
    Kennedy, J.: Particle swarm optimization. In: Gass, S.I., Fu, M.C. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, New York (2010)Google Scholar
  35. 35.
    Kulkarni, R.V.; Venayagamoorthy, G.K.: Bio-inspired algorithms for autonomous deployment and localization of sensor nodes. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40(6), 663–675 (2010)CrossRefGoogle Scholar
  36. 36.
    Arora, S.; Singh, S.: A conceptual comparison of firefly algorithm, bat algorithm and cuckoo search. In: 2013 International Conference on Control Computing Communication and Materials (ICCCCM), pp. 1–4, IEEE (2013)Google Scholar
  37. 37.
    Eberhart, R.C.; Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, IEEE , vol. 1, pp. 94–100 (2001)Google Scholar
  38. 38.
    Shi, Y. et al.: Particle swarm optimization: developments, applications and resources. In Proceedings of the 2001 Congress on Evolutionary Computation, 2001., vol. 1, pp. 81–86, IEEE (2001)Google Scholar
  39. 39.
    Parsopoulos, K.E.; Vrahatis, M.N.: Recent approaches to global optimization problems through particle swarm optimization. Nat. Comput. 1(2–3), 235–306 (2002)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.I.K. GUJRAL Punjab Technical UniversityJalandharIndia
  2. 2.SBSSTCFerozpurIndia

Personalised recommendations