Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Thermal and Economical Optimization of a Shell and Tube Evaporator Using Hybrid Backtracking Search—Sine–Cosine Algorithm

  • 160 Accesses

  • 14 Citations

Abstract

This paper proposes a hybrid optimization algorithm based on the combination of the merits of the backtracking search (BSA) and sine–cosine algorithm (SCA) to achieve the optimal design of a shell and tube evaporator. To the author’s best knowledge, this is the first application of the metaheuristic algorithms over shell and tube evaporator design problems. In order to test the accuracy of the proposed hybrid algorithm, 10 well-known optimization test functions have been solved. Numerical results obtained from the hybrid BSA–SCA have been compared with the literature optimizers including differential search, big bang–big crunch optimization, quantum-behaved particle swarm optimization, bat algorithm, intelligent tuned harmony search algorithm, and backtracking search algorithm. Comparison results reveal that solutions obtained from the BSA–SCA are better than those of the results acquired by the aforementioned optimizers with respect to statistical analysis. Proposed optimization procedure is then utilized to obtain optimum values of the two heat exchanger design objectives including total cost and overall heat transfer coefficient. Six decision variables such as tube outer diameter, shell diameter, baffle spacing, tube length, number of tube passes, and tube bundle configuration are selected to be iteratively optimized. It is found that BSA–SCA provides better results than the compared literature optimizers for both objective functions. In addition, a sensitivity analysis is performed for the design parameters at the optimal point. Results show that variation of the design parameters at the optimum point has considerable effect on the objective function rates.

This is a preview of subscription content, log in to check access.

Abbreviations

\(A_{\mathrm{s}}\) :

Cross-sectional area normal to shell side flow (\(\hbox {m}^{2}\))

\(a_{\mathrm{s}}\) :

Cross-sectional area normal to in-tube flow (\(\hbox {m}^{2}\))

B:

Baffle spacing (m)

BAT:

Bat algorithm

BB–BC:

Big bang–big crunch algorithm

Bo:

Boiling number

BSA:

Backtracking search algorithm

\(C_{\mathrm{e}}\) :

Energy cost (€/k Wh)

\(C_{\mathrm{i}}\) :

Capital investment cost (€)

\(C_{\mathrm{o}}\) :

Annual operation cost (€/year)

\(C_{\mathrm{od}}\) :

Total operating cost (€)

\(C_{\mathrm{l}}\) :

Shell side clearance (m)

\(C_{\mathrm{p}}\) :

Specific heat (J/kg K)

D :

Problem dimension

DS:

Differential search algorithm

\(D_{\mathrm{e}}\) :

Hydraulic shell diameter (m)

\(D_{\mathrm{s}}\) :

Shell inside diameter (m)

\(d_{\mathrm{i}}\) :

Tube inside diameter (m)

\(d_{\mathrm{o}}\) :

Tube outside diameter (m)

E :

Convection enhancement factor

F :

Correction factor

FA:

Firefly algorithm

\(f_\mathrm{s}\) :

Shell side friction factor

\(f_\mathrm{t}\) :

Tube side friction factor

Fr :

Froude number

G :

Mass velocity (\(\hbox {kg/m}^{2}\,\hbox {s}\))

H :

Annual operating time (h/year)

\(h_{\mathrm{s}}\) :

Shell side heat transfer coefficient (\(\hbox {W/m}^{2}\,\hbox {K}\))

\(h_{\mathrm{t}}\) :

Tube side heat transfer coefficient (\(\hbox {W/m}^{2}\,\hbox {K}\))

\(h_{\mathrm{fg}}\) :

Latent heat of vaporization (J/kg)

\(h_{\mathrm{nb}}\) :

Nucleate boiling heat transfer coefficient \((\hbox {W/m}^{2}\,\hbox {K})\)

\(h_{\mathrm{tp}}\) :

Two-phase heat transfer coefficient \((\hbox {W/m}^{2}\,\hbox {K})\)

ITHS:

Intelligent tuned harmony search

i :

Annual discount rate (%)

k :

Heat conductivity (W/m K)

L :

Tube length (m)

M :

Molecular weight (kg/k mol)

\({\dot{m}}_\mathrm{s} \) :

Shell side mass flow rate (kg/s)

\({\dot{m}}_\mathrm{t} \) :

Tube side mass flow rate (kg/s)

N :

Population size

ny:

Equipment life (year)

\(N_{\mathrm{b}}\) :

Number of baffles

\(N_{\mathrm{t}}\) :

Tube number

Nu :

Nusselt number

P :

Pumping power (W)

\(P_{\mathrm{t}}\) :

Tube pitch (m)

\(\Delta P_{\mathrm{s} }\) :

Shell side pressure drop (Pa)

\(\Delta P_{\mathrm{t}}\) :

Tube side pressure drop (Pa)

\(Pr_{\mathrm{s}}\) :

Shell side Prandtl number

\(Pr_{\mathrm{t}}\) :

Tube side Prandtl number

\(p_{\mathrm{r}}\) :

Reduced pressure (\(p/p_{\mathrm{sat}}\))

Q :

Heat load (W)

QPSO:

Quantum-behaved particle swarm optimization

\(q{^\prime \prime }\) :

Heat flux \((\hbox {W/m}^{2})\)

\(R_{\mathrm{fs}}\) :

Shell side fouling resistance (\(\hbox {m}^{2} \hbox {K/W}\))

\(R_{\mathrm{ft}}\) :

Tube side fouling resistance (\(\hbox {m}^{2} \hbox {K/W}\))

r :

Uniform random number between 0 and 1

\(Re_{\mathrm{s}}\) :

Shell side Reynold number

\(Re_{\mathrm{t}}\) :

Tube side Reynold number

S :

Empirical boiling suppression

S :

Total heat exchange area (\(\hbox {m}^{2}\))

SCA:

Sine–cosine algorithm

T :

Temperature (K)

\(\Delta T_{\mathrm{LM}}\) :

Logarithmic mean temperature difference

U :

Overall heat transfer coefficient (\(\hbox {W/m}^{2}\,\hbox {K}\))

\(v_{\mathrm{s}}\) :

Shell side flow velocity (m/s)

x :

Vapor quality

\(\mu \) :

Dynamic viscosity (Pa s)

\(\rho \) :

Density (\(\hbox {kg/m}^{3}\))

\(\eta \) :

Pumping efficiency

b:

Bulk

f:

Fluid

g:

Gas

i:

Inlet

l:

Liquid

o:

Outlet

s:

Shell side

t:

Tube side

w:

Tube wall

References

  1. 1.

    Ponce-Ortega, J.; Serna-Gonzalez, M.; Jimenez-Gutierrez, A.: Use of genetic algorithms for the optimal design of shel and tube heat exchangers. Appl. Therm. Eng. 6, 203–209 (2009)

  2. 2.

    Fettaka, S.; Thibault, J.; Gupta, Y.: Design of shell and tube heat exchangers using multiobjective optimization. Int. J. Heat. Mass. Transf. 60, 343–354 (2013)

  3. 3.

    Selbas, R.; Kızılkan, O.; Reppich, M.: A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view. Chem. Eng. Process 45, 268–275 (2006)

  4. 4.

    Wildi-Tremblay, P.; Gosselin, L.: Minimizing shell and tube heat exchanger cost with genetic algorithms and considering maintenance. Int. J. Energ. Res. 31, 867–885 (2007)

  5. 5.

    Ozçelik, Y.: Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm. Appl. Therm. Eng. 27, 1849–1856 (2007)

  6. 6.

    Caputo, A.C.; Pelagagge, P.M.; Salini, P.: Heat exchanger design based on economic optimization. Appl. Therm. Eng. 29, 1151–1159 (2008)

  7. 7.

    Babu, B.V.; Munawar, S.A.: Differential evolution strategies for optimal design of shell and tube heta exchangers. Chem. Eng. Sci. 62, 3720–3739 (2007)

  8. 8.

    Hajabdollahi, H.; Ahmadi, P.; Dincer, I.: Thermoeconomic optimization of a shell and tube condenser using both genetic algorithm and particle swarm. Int. J. Refrig. 34, 1066–1076 (2011)

  9. 9.

    Hadidi, A.; Hadidi, M.; Nazari, A.: A new design approach for shell-and-tube heta exchangers using imperialist competitive algorithm (ICA) from economic point of view. Energ. Convers. Manage. 67, 66–74 (2013)

  10. 10.

    Asadi, M.; Song, Y.; Sunden, B.; Xie, G.: Economic optimization design of shell-and-tube heat exchangers by a cuckoo-search-algorithm. Appl. Therm. Eng. 73, 1032–1040 (2014)

  11. 11.

    Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219, 8121–8144 (2013)

  12. 12.

    Mirjalili, S.: SCA: A Sine Cosine Algorithm for solving optimization problem. Knowl-Based. Syst. 96, 120–133 (2016)

  13. 13.

    Erol, O.K.; Eksin, I.: A new optimization method: Big Bang - Big Crunch. Adv. Eng. Softw. 27, 106–111 (2006)

  14. 14.

    Yang, X.S. : Firefly algorithm for multimodal optimization, In: O.Watanabe, T. Zeugmann (Eds.), Stochastic Algorithms: Foundations and Applications, SAGA 2009, Lecture notes in computer Science, vol. 5792, Springer, Berlin, pp. 169–178 (2009)

  15. 15.

    Yang, X.S.: A new metaheuristic bat-inspired algorithm, In: J.R. Gonzalez, et al. (Eds.), Nature Inspired Cooperative Strategies for Optimization (NISCO 2010). Studies in Computational Intelligence, Springer Berlin, vol. 284, pp. 65–74 (2010)

  16. 16.

    Civicioglu, P.: Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput. Geosci. 46, 229–247 (2012)

  17. 17.

    Sun, J.; Feng, B.; Xu, W.: Particle swarm optimization with particles having quantum behaviour. In: Proceedings of congress on evolutionary computation, Portland, OR, USA, pp. 325–331 (2004)

  18. 18.

    Sun, J.; Xu, W.; Feng, B.: Adaptive parameter control for quantum behaved particle swarm optimization on individual level, In: Proceedings of IEEE International Conference on Systems, Man and Cybernatics, Big Island, HI, USA, pp. 3049–3054 (2005)

  19. 19.

    Yadav, P.; Kumar, R.; Panda, S.K.; Chang, C.S.: An intelligent tuned harmony search algorithm for optimisation. Inform. Sci. 196, 47–72 (2012)

  20. 20.

    Kennedy, J.; Eberhart, R.: Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks 4, 1942–1948 (1995)

  21. 21.

    Geem, Z.W.: Harmony Search algorithms for structural design optimization. Springer, Berlin (2009)

  22. 22.

    Kern, D.Q.: Process Heat Transfer. McGraw-Hill, New York (1950)

  23. 23.

    Sinnot, R.K.: Coulson and Richardson’s Chemical Engineering. In: Chemical Engineering Design, vol.6, Butterwoth – Heinemann (2005)

  24. 24.

    Gungor, K.E.; Winterton, R.H.S.: A general correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Transf. 29, 351–358 (1986)

  25. 25.

    Dittus, F.W.; Boelter, L.M.K.: Heat transfer in automobile radiators of the tubular type. Univ. Calif. Publ. Eng. 2, 443–461 (1930)

  26. 26.

    Cooper, M.G.: Heat flow rates in saturated nucleate pool boiling—a wide ranging examination using reduced properties. Adv. Heat. Transf. 16, 157–239 (1984)

  27. 27.

    Rohsenow, W.M.; Hartnett, J.P.: Handbook of heat transfer. McGraw-Hill, New York (1973)

  28. 28.

    Incropera, F.P.; Dewitt, D.P.: Fundamentals of Heat and Mass Transfer. Wiley, New York (1996)

  29. 29.

    Muller-Steinhagen, H.; Heck, K.: A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Process 20, 297–308 (1986)

  30. 30.

    Taal, M.; Bulatov, I.; Klemes, J.; Stehlik, P.: Cost estimation and energy price forecast for economic evaluation of retrofit projects. Appl. Therm. Eng. 23, 1819–1835 (2003)

Download references

Author information

Correspondence to Oguz Emrah Turgut.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Turgut, O.E. Thermal and Economical Optimization of a Shell and Tube Evaporator Using Hybrid Backtracking Search—Sine–Cosine Algorithm. Arab J Sci Eng 42, 2105–2123 (2017). https://doi.org/10.1007/s13369-017-2458-6

Download citation

Keywords

  • Backtracking search
  • Metaheuristics
  • Numerical modeling
  • Shell and tube evaporator