Combination of 4-Hydroxybutyrate Carbon Precursors as Substrate for Simultaneous Production of P(3HB-co-4HB) and Yellow Pigment by Cupriavidus sp. USMAHM13


Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is a type of polyhydroxyalkanoate (PHA) that has attracted intensive attention in the medical applications. A novel P(3HB-co-4HB)-producing bacteria strain Cupriavidus sp. USMAHM13 accumulates high levels of PHAs and a yellow pigment that has potential antibacterial property. This present study was conducted to evaluate the effect of various combination of 4-hydroxybutyrate (4HB) carbon precursors on the biosynthesis of P(3HB-co-4HB) and yellow pigment. Combination of 1,4-butanediol with 1,6-hexanediol shows an effective yield on cell dry weight of 1.8–10.8 g/L, PHA content of 28–47 wt% and pigment concentration of 0.05–0.18 g/L. Enhancement of P(3HB-co-4HB) and yellow pigment production were successfully achieved using 1,4-butanediol with 1,6-hexanediol at \(\hbox {C/N}=23\) which resulted in an outstanding increased of PHA content and pigment concentration of 52 wt% and 0.25 g/L, respectively. Furthermore, the addition of fructose had successfully induced the yellow pigment production by 61%, without affecting the growth and PHA accumulation. This report was proved to show the capability of Cupriavidus sp. USMAHM13 to produce high yield of P(3HB-co-4HB) with various 4HB monomer compositions and yellow pigment from various of 4HB carbon precursors. As this was the first to report on the high yield of yellow pigment production by Cupriavidus sp. USMAHM13, the selection of 4HB carbon precursors’ combination can serve a significant experience and strategy to increase both pigment and P(3HB-co-4HB) production.

This is a preview of subscription content, log in to check access.


  1. 1.

    Koller, M.; Gasser, I.; Schmid, F.; Berg, G.: Linking ecology with economy: insights into polyhydroxyalkanoate-producing microorganisms. Eng. Life Sci. 11, 222–237 (2011)

    Article  Google Scholar 

  2. 2.

    Sudesh, K.; Abe, H.; Doi, Y.: Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25, 1503–1555 (2000)

    Article  Google Scholar 

  3. 3.

    Anderson, A.J.; Dawes, E.A.: Occurrence, metabolism, metabolic rate and industrial uses of bacterial polyhydroxyalkanoates. Microbial. Rev. 54, 450–472 (1990)

    Google Scholar 

  4. 4.

    Loo, C.Y.; Sudesh, K.: Biosynthesis and native granule characteristics of poly(3-hydroxyalkanoate-co-3-hydroxyvalerate) in Delftia acidovorans. Int. J. Biol. Macromol. 40, 466–471 (2007)

    Article  Google Scholar 

  5. 5.

    Thangadurai, D.; Sangeetha, J.: Biotechnology and Bioinformatics: Advances and Applications of Bioenergy, Bioremediation and Biopharmaceutical Research. Apple Academic Press, Oakville (2014)

    Google Scholar 

  6. 6.

    Vandamme, P.; Coenye, T.: Taxonomy of the genus Cupriavidus: a tale of lost and found. Int. J. Syst. Evolut. Microbiol. 54, 2285–2289 (2004)

    Article  Google Scholar 

  7. 7.

    Ramachandran, H.; Amirul, A.A.: Yellow-pigmented Cupriavidus sp., a novel bacterium capable of utilizing glycerine pitch for the sustainable production of P(3HB-co-4HB). J. Chem. Technol. Biotechnol. 88, 1030–1038 (2003)

    Article  Google Scholar 

  8. 8.

    Ramachandran, H.; Iqbal, M.A.; Amirul, A.A.: Identification and characterization of the yellow pigment synthesized by Cupriavidus sp. USMAHM13. Appl. Biochem. Biotechnol. 174, 461–470 (2014)

    Article  Google Scholar 

  9. 9.

    Braunegg, G.; Lefebvre, G.; Genser, K.F.: Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J. Biotechnol. 65, 127–161 (1998)

    Article  Google Scholar 

  10. 10.

    Amirul, A.A.; Yahya, A.R.M.; Sudesh, K.; Azizan, M.N.M.; Majid, M.I.A.: Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA1020 isolated from Lake Kulim, Kedah. Bioresour. Technol. 99, 4903–4909 (2008)

    Article  Google Scholar 

  11. 11.

    Vigneswari, S.; Nik, L.A.; Majid, M.I.A.; Amirul, A.A.: Improved production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer using a combination of 1,4-butanediol and \(\gamma \)-butyrolactone. World J. Microbiol. Biotechnol. 26, 743–746 (2009)

    Article  Google Scholar 

  12. 12.

    Huong, K.H.; Ahmad, R.M.Y.; Amirul, A.A.: Pronounced synergistic influence of mixed substrate cultivation on single step copolymer P(3HB-co-4HB) biosynthesis with a wide range of 4HB monomer composition. J. Chem. Technol. Biotechnol. 89, 1023–1029 (2013)

    Article  Google Scholar 

  13. 13.

    Nakamura, S.; Doi, Y.; Scandola, M.: Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 25, 4237–4241 (1992)

    Article  Google Scholar 

  14. 14.

    Huu Phong, T.; Van Thuoc, D.; Sudesh, K.: Biosynthesis of poly(3-hydroxybutyrate) and its copolymers by Yangia sp. ND199 from different carbon sources. Int. J. Biol. Macromol. 84, 361–366 (2016)

    Article  Google Scholar 

  15. 15.

    Volova, T.G.; Zhila, N.O.; Kalacheva, G.S.; Sokolenko, V.A.; Sinski, E.J.: Synthesis of 3-hydroxybutyrate-co-4-hydroxybutyrate copolymers by hydrogen-oxidizing bacteria. Appl. Biochem. Microbiol. 47, 494–499 (2011)

    Article  Google Scholar 

  16. 16.

    Vigneswari, S.; Vijaya, S.; Majid, M.I.A.; Sipaut, C.S.; Azizan, M.N.M.; Amirul, A.A.: Enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer with manipulated variables and its properties. J. Ind. Microbiol. Biotechnol. 36, 547–556 (2009)

    Article  Google Scholar 

  17. 17.

    Chanprateep, S.: Current trends in biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng. 110, 621–632 (2010)

    Article  Google Scholar 

  18. 18.

    Zhila, N.O.; Volova, T.G.; Nikolaeva, E.D.; Syrvacheva, D.A.: Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers. J. Sib. Fed. Univ. 2, 158–171 (2011)

    Google Scholar 

  19. 19.

    Brinkmann, U.; Babel, W.: Simultaneous utilization of heterotropic substrates by Hansenula polymorpha MH30 results in enhanced growth rates. Appl. Microbiol. Biotechnol. 37, 98–103 (1992)

    Article  Google Scholar 

  20. 20.

    Chanprateep, S.; Buasri, K.; Muangwong, A.; Utiswannakul, P.: Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Degrad. Stab. 95, 2003–2012 (2010)

    Article  Google Scholar 

  21. 21.

    Steinbüchel, A.; Lütke-Eversloh, T.: Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16, 81–96 (2003)

    Article  Google Scholar 

  22. 22.

    Doi, Y.; Segawa, A.; Nakamura, S.; Kunioka, M.: Production of biodegradable copolyesters by Alcaligenes eutrophus. In: Dawes, E.A. (ed.) Novel Biodegradable Microbial Polymers, pp. 37–48. Kluwer Academic Publishers, Dordrecht (1990)

    Google Scholar 

  23. 23.

    Babel, W.: The auxiliary substrate concept: from simple considerations to heuristically valuable knowledge. Eng. Life Sci. 9, 285–290 (2009)

    Article  Google Scholar 

  24. 24.

    Madden, L.A.; Anderson, A.J.; Asrar, J.; Berger, P.; Garrett, P.: Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) synthesized by Ralstonia eutropha in fed-batch cultures. Polym. Commun. 41, 3499–3505 (2000)

  25. 25.

    Saharan, B.S.; Grewal, A.; Kumar, P.: Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chin. J. Biol. 2014, 1–18 (2014)

    Article  Google Scholar 

  26. 26.

    Kakizono, T.; Kobayashi, M.; Nagai, S.: Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green algae. J. Ferment. Bioeng. 74, 403–405 (1992)

    Article  Google Scholar 

  27. 27.

    Subhasree, R.S.; Babu, P.D.; Vidyalaksmi, R.; Mohan, V.C.: Effect of carbon and nitrogen sources on stimulation of pigment production by Monascus purpureus on jackfruit seeds. Int. J. Microbiol. Res. 2, 184–187 (2011)

    Google Scholar 

  28. 28.

    Latha, B.V.; Jeevaratnam, K.; Murali, H.S.; Manja, K.S.: Influence of growth factors on carotenoid pigmentation of Rhodotorula glutinis DFR-PDY from natural source. India J. Biotechnol. 4, 353–357 (2005)

    Google Scholar 

  29. 29.

    Yamane, Y.; Higashida, K.; Nakashimada, Y.; Kakizono, T.; Nishio, N.: Influence of oxygen and glucose on primary metabolism and astaxanthin production by Phaffia rhodozyma in batch and fed-batch cultures: kinetic and stoichiometric analysis. Appl. Environ. Microbiol. 63, 4471–4478 (1997)

    Google Scholar 

  30. 30.

    Girard, P.; Falconnier, B.; Bricout, J.; Vladescu, B.: \(\beta \)-carotene producing mutants of Phaffia rhodozyma. Appl. Microbiol. Biotechnol. 41, 183–191 (1994)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. A. Amirul.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iszatty, I., Noor Aidda, O., Hema, R. et al. Combination of 4-Hydroxybutyrate Carbon Precursors as Substrate for Simultaneous Production of P(3HB-co-4HB) and Yellow Pigment by Cupriavidus sp. USMAHM13. Arab J Sci Eng 42, 2303–2311 (2017).

Download citation


  • Bacterial metabolite
  • Biomaterials
  • P(3HB-co-4HB) copolymer
  • Polyhydroxyalkanoate
  • Yellow pigment