Arabian Journal for Science and Engineering

, Volume 42, Issue 6, pp 2303–2311 | Cite as

Combination of 4-Hydroxybutyrate Carbon Precursors as Substrate for Simultaneous Production of P(3HB-co-4HB) and Yellow Pigment by Cupriavidus sp. USMAHM13

Research Article - Biological Sciences
  • 36 Downloads

Abstract

Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is a type of polyhydroxyalkanoate (PHA) that has attracted intensive attention in the medical applications. A novel P(3HB-co-4HB)-producing bacteria strain Cupriavidus sp. USMAHM13 accumulates high levels of PHAs and a yellow pigment that has potential antibacterial property. This present study was conducted to evaluate the effect of various combination of 4-hydroxybutyrate (4HB) carbon precursors on the biosynthesis of P(3HB-co-4HB) and yellow pigment. Combination of 1,4-butanediol with 1,6-hexanediol shows an effective yield on cell dry weight of 1.8–10.8 g/L, PHA content of 28–47 wt% and pigment concentration of 0.05–0.18 g/L. Enhancement of P(3HB-co-4HB) and yellow pigment production were successfully achieved using 1,4-butanediol with 1,6-hexanediol at \(\hbox {C/N}=23\) which resulted in an outstanding increased of PHA content and pigment concentration of 52 wt% and 0.25 g/L, respectively. Furthermore, the addition of fructose had successfully induced the yellow pigment production by 61%, without affecting the growth and PHA accumulation. This report was proved to show the capability of Cupriavidus sp. USMAHM13 to produce high yield of P(3HB-co-4HB) with various 4HB monomer compositions and yellow pigment from various of 4HB carbon precursors. As this was the first to report on the high yield of yellow pigment production by Cupriavidus sp. USMAHM13, the selection of 4HB carbon precursors’ combination can serve a significant experience and strategy to increase both pigment and P(3HB-co-4HB) production.

Keywords

Bacterial metabolite Biomaterials P(3HB-co-4HB) copolymer Polyhydroxyalkanoate Yellow pigment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koller, M.; Gasser, I.; Schmid, F.; Berg, G.: Linking ecology with economy: insights into polyhydroxyalkanoate-producing microorganisms. Eng. Life Sci. 11, 222–237 (2011)CrossRefGoogle Scholar
  2. 2.
    Sudesh, K.; Abe, H.; Doi, Y.: Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25, 1503–1555 (2000)CrossRefGoogle Scholar
  3. 3.
    Anderson, A.J.; Dawes, E.A.: Occurrence, metabolism, metabolic rate and industrial uses of bacterial polyhydroxyalkanoates. Microbial. Rev. 54, 450–472 (1990)Google Scholar
  4. 4.
    Loo, C.Y.; Sudesh, K.: Biosynthesis and native granule characteristics of poly(3-hydroxyalkanoate-co-3-hydroxyvalerate) in Delftia acidovorans. Int. J. Biol. Macromol. 40, 466–471 (2007)CrossRefGoogle Scholar
  5. 5.
    Thangadurai, D.; Sangeetha, J.: Biotechnology and Bioinformatics: Advances and Applications of Bioenergy, Bioremediation and Biopharmaceutical Research. Apple Academic Press, Oakville (2014)CrossRefGoogle Scholar
  6. 6.
    Vandamme, P.; Coenye, T.: Taxonomy of the genus Cupriavidus: a tale of lost and found. Int. J. Syst. Evolut. Microbiol. 54, 2285–2289 (2004)CrossRefGoogle Scholar
  7. 7.
    Ramachandran, H.; Amirul, A.A.: Yellow-pigmented Cupriavidus sp., a novel bacterium capable of utilizing glycerine pitch for the sustainable production of P(3HB-co-4HB). J. Chem. Technol. Biotechnol. 88, 1030–1038 (2003)CrossRefGoogle Scholar
  8. 8.
    Ramachandran, H.; Iqbal, M.A.; Amirul, A.A.: Identification and characterization of the yellow pigment synthesized by Cupriavidus sp. USMAHM13. Appl. Biochem. Biotechnol. 174, 461–470 (2014)CrossRefGoogle Scholar
  9. 9.
    Braunegg, G.; Lefebvre, G.; Genser, K.F.: Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J. Biotechnol. 65, 127–161 (1998)CrossRefGoogle Scholar
  10. 10.
    Amirul, A.A.; Yahya, A.R.M.; Sudesh, K.; Azizan, M.N.M.; Majid, M.I.A.: Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA1020 isolated from Lake Kulim, Kedah. Bioresour. Technol. 99, 4903–4909 (2008)CrossRefGoogle Scholar
  11. 11.
    Vigneswari, S.; Nik, L.A.; Majid, M.I.A.; Amirul, A.A.: Improved production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer using a combination of 1,4-butanediol and \(\gamma \)-butyrolactone. World J. Microbiol. Biotechnol. 26, 743–746 (2009)CrossRefGoogle Scholar
  12. 12.
    Huong, K.H.; Ahmad, R.M.Y.; Amirul, A.A.: Pronounced synergistic influence of mixed substrate cultivation on single step copolymer P(3HB-co-4HB) biosynthesis with a wide range of 4HB monomer composition. J. Chem. Technol. Biotechnol. 89, 1023–1029 (2013)CrossRefGoogle Scholar
  13. 13.
    Nakamura, S.; Doi, Y.; Scandola, M.: Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 25, 4237–4241 (1992)CrossRefGoogle Scholar
  14. 14.
    Huu Phong, T.; Van Thuoc, D.; Sudesh, K.: Biosynthesis of poly(3-hydroxybutyrate) and its copolymers by Yangia sp. ND199 from different carbon sources. Int. J. Biol. Macromol. 84, 361–366 (2016)CrossRefGoogle Scholar
  15. 15.
    Volova, T.G.; Zhila, N.O.; Kalacheva, G.S.; Sokolenko, V.A.; Sinski, E.J.: Synthesis of 3-hydroxybutyrate-co-4-hydroxybutyrate copolymers by hydrogen-oxidizing bacteria. Appl. Biochem. Microbiol. 47, 494–499 (2011)CrossRefGoogle Scholar
  16. 16.
    Vigneswari, S.; Vijaya, S.; Majid, M.I.A.; Sipaut, C.S.; Azizan, M.N.M.; Amirul, A.A.: Enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer with manipulated variables and its properties. J. Ind. Microbiol. Biotechnol. 36, 547–556 (2009)CrossRefGoogle Scholar
  17. 17.
    Chanprateep, S.: Current trends in biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng. 110, 621–632 (2010)CrossRefGoogle Scholar
  18. 18.
    Zhila, N.O.; Volova, T.G.; Nikolaeva, E.D.; Syrvacheva, D.A.: Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers. J. Sib. Fed. Univ. 2, 158–171 (2011)Google Scholar
  19. 19.
    Brinkmann, U.; Babel, W.: Simultaneous utilization of heterotropic substrates by Hansenula polymorpha MH30 results in enhanced growth rates. Appl. Microbiol. Biotechnol. 37, 98–103 (1992)CrossRefGoogle Scholar
  20. 20.
    Chanprateep, S.; Buasri, K.; Muangwong, A.; Utiswannakul, P.: Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Degrad. Stab. 95, 2003–2012 (2010)CrossRefGoogle Scholar
  21. 21.
    Steinbüchel, A.; Lütke-Eversloh, T.: Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16, 81–96 (2003)CrossRefGoogle Scholar
  22. 22.
    Doi, Y.; Segawa, A.; Nakamura, S.; Kunioka, M.: Production of biodegradable copolyesters by Alcaligenes eutrophus. In: Dawes, E.A. (ed.) Novel Biodegradable Microbial Polymers, pp. 37–48. Kluwer Academic Publishers, Dordrecht (1990)CrossRefGoogle Scholar
  23. 23.
    Babel, W.: The auxiliary substrate concept: from simple considerations to heuristically valuable knowledge. Eng. Life Sci. 9, 285–290 (2009)CrossRefGoogle Scholar
  24. 24.
    Madden, L.A.; Anderson, A.J.; Asrar, J.; Berger, P.; Garrett, P.: Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) synthesized by Ralstonia eutropha in fed-batch cultures. Polym. Commun. 41, 3499–3505 (2000)Google Scholar
  25. 25.
    Saharan, B.S.; Grewal, A.; Kumar, P.: Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chin. J. Biol. 2014, 1–18 (2014)CrossRefGoogle Scholar
  26. 26.
    Kakizono, T.; Kobayashi, M.; Nagai, S.: Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green algae. J. Ferment. Bioeng. 74, 403–405 (1992)CrossRefGoogle Scholar
  27. 27.
    Subhasree, R.S.; Babu, P.D.; Vidyalaksmi, R.; Mohan, V.C.: Effect of carbon and nitrogen sources on stimulation of pigment production by Monascus purpureus on jackfruit seeds. Int. J. Microbiol. Res. 2, 184–187 (2011)Google Scholar
  28. 28.
    Latha, B.V.; Jeevaratnam, K.; Murali, H.S.; Manja, K.S.: Influence of growth factors on carotenoid pigmentation of Rhodotorula glutinis DFR-PDY from natural source. India J. Biotechnol. 4, 353–357 (2005)Google Scholar
  29. 29.
    Yamane, Y.; Higashida, K.; Nakashimada, Y.; Kakizono, T.; Nishio, N.: Influence of oxygen and glucose on primary metabolism and astaxanthin production by Phaffia rhodozyma in batch and fed-batch cultures: kinetic and stoichiometric analysis. Appl. Environ. Microbiol. 63, 4471–4478 (1997)Google Scholar
  30. 30.
    Girard, P.; Falconnier, B.; Bricout, J.; Vladescu, B.: \(\beta \)-carotene producing mutants of Phaffia rhodozyma. Appl. Microbiol. Biotechnol. 41, 183–191 (1994)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  • I. Iszatty
    • 1
  • O. Noor Aidda
    • 1
  • R. Hema
    • 2
  • A. A. Amirul
    • 1
    • 3
    • 4
  1. 1.School of Biological SciencesUniversiti Sains MalaysiaMindenMalaysia
  2. 2.QUEST International University PerakIpohMalaysia
  3. 3.Malaysian Institute of Pharmaceuticals and Nutraceuticals, NIBMGelugorMalaysia
  4. 4.Centre for Chemical BiologyBayan LepasMalaysia

Personalised recommendations