Studying Two Series of Ternary Deep Eutectic Solvents (Choline Chloride–Urea–Glycerol) and (Choline Chloride–Malic Acid–Glycerol), Synthesis and Characterizations

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Deep eutectic solvents are a recent class of solvents that started to get attention to replace the ionic liquids and, of course, the traditional organic solvents. In this work, two series mixtures of choline chloride–urea–glycerol and choline chloride–malic acid–glycerol, liquids at room temperature, were synthesized in different molar ratios and their properties were studied. Electrochemical characterization test was performed using Pt/C catalyst and the results showed an interesting electrochemical stability for choline chloride–urea–glycerol mixture within the potential range of −1 to 1 V. The viscosity was reported as a function of temperature for mixtures which behaved as Newtonian fluids and as a function of shear rate for those which behaved as non-Newtonian fluids. For instance, 1–1–1 choline chloride–urea–glycerol viscosity was decreased from 706.8 to 26.9 cP when the temperature was increased from 20 to 80 \({^{\circ }}\)C, respectively. While for the same mixture at 10 \({^{\circ }}\)C, it was decreased from 30,933 to 3948 cP by increasing the shear rate from 0.03 to 0.38 S\(^{{-}1}\), respectively. Thermogravimetric analysis, differential scanning calorimeter and density measurements were all reported in detail in this paper.

This is a preview of subscription content, log in to check access.


  1. 1.

    Maugeri, Z.; Leitner, W.; Domínguez de María, P.: Chymotrypsin-catalyzed peptide synthesis in deep eutectic solvents. Eur. J. Org. Chem. 2013(20), 4223–4228 (2013)

    Article  Google Scholar 

  2. 2.

    Zhang, Q.; Vigier, K.; Royer, S.; Jerome, F.: Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108–7146 (2012)

    Article  Google Scholar 

  3. 3.

    Smith, E.; Abbott, A.; Ryder, K.: Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114, 11060–11082 (2014)

    Article  Google Scholar 

  4. 4.

    Sun, J.; Forsyth, M.; MacFarlane, D.: Room-temperature molten salts based on the quaternary ammonium ion. J. Phys. Chem. B 102, 8858–8864 (1998)

    Article  Google Scholar 

  5. 5.

    Abbott, A.; McKenzie, K.: Application of ionic liquids to the electrodeposition of metals. Phys. Chem. Chem. Phys. 8, 4265–4279 (2006)

    Article  Google Scholar 

  6. 6.

    Abbott, A.; Harris, R.; Ryder, K.: Application of hole theory to define ionic liquids by their transport properties. J. Phys. Chem. B 111, 4910–4913 (2007)

    Article  Google Scholar 

  7. 7.

    Francisco, M.; van den Bruinhorst, A.; Kroon, M.: Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew. Chem. Int. Ed. 52, 3074–3085 (2013)

  8. 8.

    Ruß, C.; König, B.: Low melting mixtures in organic synthesis—an alternative to ionic liquids. Green Chem. 14, 2969–2982 (2012)

    Article  Google Scholar 

  9. 9.

    Abbott, A.; Capper, G.; Davies, D.; Rasheed, R.; Tambyrajah, V.: Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 1, 70–71 (2003)

    Article  Google Scholar 

  10. 10.

    Shahbaz, K.; Baroutian, S.; Mjalli, F.; Hashim, M.; AlNashef, I.: Densities of ammonium and phosphonium based deep eutectic solvents: prediction using artificial intelligence and group contribution techniques. Thermochim. Acta 527, 59–66 (2012)

    Article  Google Scholar 

  11. 11.

    Abbott, A.; Capper, G.; Gray, S.: Design of improved deep eutectic solvents using hole theory. Chem. Phys. Chem. 7, 803–806 (2006)

    Google Scholar 

  12. 12.

    Abbott, A.; Capper, G.; Davies, D.; Shikotra, P.: Processing metal oxides using ionic liquids, Mineral Processing and Extractive Metallurgy. Trans. Inst. Min. Metall. C 115(1), 15–18 (2013)

  13. 13.

    Abbott, A.; Harris, R.; Ryder, K.; D’Agostino, C.; Gladden, L.; Mantle, M.: Glycerol eutectics as sustainable solvent systems. Green Chem. 13, 82–90 (2011)

    Article  Google Scholar 

  14. 14.

    Abbott, A.; Cullis, P.; Gibson, M.; Harris, R.; Raven, E.: Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem. 9, 868–872 (2007)

    Article  Google Scholar 

  15. 15.

    Shahbaz, K.; Baroutian, S.; Mjalli, F.; Hashim, M.; AlNashef, I.: Prediction of glycerol removal from biodiesel using ammonium and phosphunium based deep eutectic solvents using artificial intelligence techniques. Chemom. Intell. Lab. Syst. 118, 193–199 (2012)

    Article  Google Scholar 

  16. 16.

    Shahbaz, K.; Mjalli, F.; Hashim, M.; AlNashef, I.: Elimination of all free glycerol and reduction of total glycerol from palm oil-based biodiesel using non-glycerol based deep eutectic solvents. Sep. Sci. Technol. 48, 1184–1193 (2013)

    Article  Google Scholar 

  17. 17.

    Abdullah, G.; Kadhom, M.: Studying of two choline chloride’s deep eutectic solvents in their aqueous mixtures. Int. J. Eng. Res. Dev. 12(9), 73–80 (2016)

    Google Scholar 

  18. 18.

    Francisco, M.; van den Bruinhorst, A.; Kroon, M.: New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem. 14, 2153–2157 (2012)

  19. 19.

    Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G.: Predicting hydrogen-bond strengths from acid–base molecular properties. The pKa slide rule: toward the solution of a long-lasting problem. Acc. Chem. Res. 42(1), 33–44 (2009)

    Article  Google Scholar 

  20. 20.

    Chemat, F.; Anjum, H.; Shariff, A.; Kumar, P.; Murugesan, T.: Thermal and physical properties of (choline chloride + urea + L-arginine) deep eutectic solvents. J. Mol. Liq. 218, 301–308 (2016)

  21. 21.

    Sze, L.; Pandey, S.; Ravula, S.; Pandey, S.; Zhao, H.; Baker, G.; Baker, S.: Ternary deep eutectic solvents tasked for carbon dioxide capture. ACS Sustain. Chem. Eng. 2, 2117–2123 (2014)

    Article  Google Scholar 

  22. 22.

    Dai, Y.; Spronsen, J.; Witkamp, G.; Verpoorte, R.; Choi, Y.: Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 766, 61–68 (2013)

    Article  Google Scholar 

  23. 23.

    Popescu, A.; Constantin, V.; Cojocaru, A.; Olteanu, M.: Electrochemical behaviour of copper(II) chloride in choline chloride–urea deep eutectic solvent. Rev. Chim. (Bucharest) 62(2), 206–211 (2011)

    Google Scholar 

  24. 24.

    Figueiredo, M.; Gomes, C.; Costa, R.; Martins, A.; Pereira, C.; Silva, F.: Differential capacity of a deep eutectic solvent based on choline chloride and glycerol on solid electrodes. Electrochim. Acta 54, 2630–2634 (2009)

    Article  Google Scholar 

  25. 25.

    Hayyan, A.; Mjalli, F.; AlNashef, I.; Al-Wahaibi, T.; Al-Wahaibi, Y.; Hashim, M.: Fruit sugar-based deep eutectic solvents and their physical properties. Thermochim. Acta 541(10), 70–75 (2012)

  26. 26.

    Ghatee, M.; Zare, M.; Moosavi, F.; Zolghadr, A.: Temperature-dependent density and viscosity of the ionic liquids 1-alkyl-3-methylimidazolium iodides: experiment and molecular dynamics simulation. J. Chem. Eng. Data 55(9), 3084–3088 (2010)

  27. 27.

    Bahadori, L.; Chakrabarti, M.; Mjalli, F.; Al Nashef, I.; Abdul Manan, N.; Hashim, M.: Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems. Electrochim. Acta 113, 205–211 (2013)

    Article  Google Scholar 

  28. 28.

    Liu, Y.; Chen, Y.; Xing, Y.: Synthesis and characterization of novel ternary deep eutectic solvents. Chin. Chem. Lett. 25, 104–106 (2014)

    Article  Google Scholar 

  29. 29.

    Segur, B.; Oberstar, H.: Viscosity of glycerol and its aqueous solutions. Ind. Eng. Chem. 43, 2117–2120 (1951)

    Article  Google Scholar 

  30. 30.

    Naser, J.; Mjalli, F.; Jibril, B.; Al-Hatmi, S.; Gano., Z.: Potassium carbonate as a salt for deep eutectic solvents. Int. J. Chem. Eng. Appl. 4(3), 114–118 (2013)

    Google Scholar 

  31. 31.

    Li, Q., Wu, G., Liu, Y., Luo, Y.: A rheological study of binary mixtures of ionic liquid \([\text{Me}_{3}\text{ NC}_{2}\text{ H}_{4}\text{ OH}]\)+\([\text{ Zn}_{2}\text{ Cl}_{5}]\)- and ethanol. Appl. Rheol. 16(6), 334–339 (2006)

  32. 32.

    Helleloid, G.: On the computation of viscosity–shear rate temperature master curves for polymeric liquids. Morehead Electron. J. Appl. Math. 1, 1–11 (2001)

    Google Scholar 

  33. 33.

    Likavčan, L.; Košík, M.; Bílik, J.; Martinkovič, M.: Determination of apparent viscosity as function of shear rate and fibres fraction in polypropylene. IJEIT 4(5), 23–26 (2014)

    Google Scholar 

  34. 34.

    Morrison, H.; Sun, C.; Neervannan, S.: Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int. J. Pharm. 378, 136–139 (2009)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ghassan H. Abdullah.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kadhom, M.A., Abdullah, G.H. & Al-Bayati, N. Studying Two Series of Ternary Deep Eutectic Solvents (Choline Chloride–Urea–Glycerol) and (Choline Chloride–Malic Acid–Glycerol), Synthesis and Characterizations. Arab J Sci Eng 42, 1579–1589 (2017).

Download citation


  • Deep eutectic solvent
  • Choline chloride
  • Non-Newtonian
  • Viscosity
  • Cyclic voltammetry and shear rate