Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

DCCD: Distributed N-Body Rigid Continuous Collision Detection for Large-Scale Virtual Environments

  • 106 Accesses

  • 1 Citations

Abstract

Continuous collision detection (CCD) is a process to interpolate the trajectory of polygons and detect collisions between successive time steps. However, this process is time-consuming, especially for a large number of moving polygons. In this paper, we present a parallel CCD algorithm, which aims to accelerate N-body rigid CCD culling by distributing the load across a distributed-memory system. This algorithm is particularly suitable for large-scale distributed simulations. Experimental results, based on a message passing interface implementation, demonstrate that our approach is more computationally efficient than existing sequential CCD approaches.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Perumalla, K.; Fujimoto, R.; McLean, T.; Riley, G.: Experiences applying parallel and interoperable network simulation techniques in on-line simulations of military networks. In: Proceedings of the 16th Workshop on Parallel and Distributed Simulation (2002)

  2. 2.

    Smed, J.; Kaukoranta, T.; Hakonen, H.: A Review on Networking and Multiplayer Computer Games. Technical Report 454, Turku Centre for Computer Science (April 2002)

  3. 3.

    Fujimoto, R.M.: Parallel and Distributed Simulation Systems. Wiley, London (2000)

  4. 4.

    Tang, M.; Manocha, D.; Otaduy, M.A.; Tong, R.: Continuous penalty forces. ACM Trans. Graph. 31(4), 107:1–107:9 (2012)

  5. 5.

    Lee, J.; Kwon, O.; Zhang, L.; Yoon, S.E.: A selective retraction-based RRT planner for various environments. IEEE Trans. Robot. 30(4), 1002–1011 (2014)

  6. 6.

    Du, P.; Zhao, J.Y.; Pan, W.B.; Wang, Y.G.: GPU accelerated real-time collision handling in virtual disassembly. J. Comput. Sci. Technol. 30(3), 511–518 (2015)

  7. 7.

    Tang, M.; Curtis, S.; Yoon, S. E.; Manocha, D.: Interactive continuous collision detection between deformable models using connectivity-based culling. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, pp. 25–36. ACM Press, Stony Brook (2008)

  8. 8.

    Tang, M.; Manocha, D.; Tong, R.F.: MCCD: multi-core collision detection between deformable models using front-based decomposition. Graph. Models 72, 7–23 (2010)

  9. 9.

    Tang, M.; Manocha, D.; Lin, J.; Tong, R. F.: Collision-streams: fast GPU-based collision detection for deformable models. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 63–70. ACM Press, New York (2011)

  10. 10.

    Wong, S.K.; Lin, W.C.; Hung, C.H.; Huang, Y.J.; Lii, S.Y.: Radial view based culling for continuous self-collision detection of skeletal models. ACM Trans. Graph. 32(4), 114:1–114:10 (2013)

  11. 11.

    Bradshaw, G.; O’Sullivan, C.: Adaptive medial-axis approximation for sphere-tree construction. ACM Trans. Graph. 23, 1–26 (2004)

  12. 12.

    Bergen, G.V.D.: Efficient collision detection of complex deformable models using AABB trees. J. Graph. Tools 2, 1–14 (1998)

  13. 13.

    Klosowski, J.; Held, M.; Mitchell, J.; Sowizral, H.; Zikan, K.: Efficient collision detection using bounding volume hierarchies of k-dops. IEEE Trans. Vis. Comput. Graph. 4, 21–37 (1998)

  14. 14.

    Curtis, S.; Tamstorf, R.; Manocha, D.: Fast collision detection for deformable models using representative-triangles. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 61–69. ACM Press, London (2008)

  15. 15.

    Tang, M.; Manocha, D.; Yoon, S.E.; Du, P.; Heo, J.P.; Tong, R.F.: VolCCD: fast continuous collision culling between deforming volume meshes. ACM Trans. Graph. 30, 111–125 (2011)

  16. 16.

    Tang, M.; Manocha, D.; Tong, R. F.: Fast continuous collision detection using deforming non-penetration filters. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 7–14. ACM Press, London (2010)

  17. 17.

    Du, P.; Tang, M.; Tong, R.F.: Fast continuous collision culling with deforming non-collinear filters. Comput. Anim. Virtual Worlds 23(6–8), 375–383 (2012)

  18. 18.

    Cohen, J.; Lin, M.; Manocha, D.; Ponamgi, M.: I-collide: An interactive and exact collision detection system for large-scale environments. In: I3D (1995)

  19. 19.

    Liu, F.;  harada, T., Lee, Y., Kim, Y. J.: Real-time collision culling of a million bodies on graphics processing units. In: SIGGRAPH ASIA (2010)

  20. 20.

    Kim, D.; Heo, J.P.; Huh, J.; Kim, J.; Yoon, S.E.: HPCCD: hybrid parallel continuous collision detection using CPUs and GPUs. Comput. Graph. Forum 28, 1791–1800 (2009)

  21. 21.

    Tang, M.; Zhao, J.-Y.; Tong, R.-F.; Manocha, D.: GPU accelerated convex hull computation. Comput. Graph. 36(5), 498–506 (2012)

  22. 22.

    Lawlor, O. S.; Kalée, L. V.: A voxel-based parallel collision detection algorithm. In: ICS (2002)

  23. 23.

    Samet, H.: Foundations of Multidimensional and Metric Data Structures. Kaufmann, Los Altos (2006)

  24. 24.

    Open MPI: A high performance message passing library. http://www.open-mpi.com/ (2015)

  25. 25.

    Liu, E. S.: On the scalability of agent-based modeling for medical nanorobotics. In: Proceedings of Winter Simulation Conference (WSC) (2015)

Download references

Author information

Correspondence to Yigang Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, P., Zhao, J., Cao, W. et al. DCCD: Distributed N-Body Rigid Continuous Collision Detection for Large-Scale Virtual Environments. Arab J Sci Eng 42, 3141–3147 (2017). https://doi.org/10.1007/s13369-016-2411-0

Download citation

Keywords

  • Continuous collision detection
  • N-body
  • Cluster
  • Load balance