Skip to main content
Log in

An ANN-Based Method to Predict Surface Roughness in Turning Operations

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In recent years, there has been a growing interest for the prediction of machining characteristics (such as surface roughness and tool wear) during machining. Several machining parameters such as cutting speed and cutting depth are known to affect the surface characteristics. Various methods are used to investigate the relative contribution of these parameters on the surface characteristics. Therefore, selecting a set of parameters according to the relative contributions is important in the prediction of the surface characteristics effectively. In this paper, a new alternative parameter selection method based on artificial neural networks is suggested. Within this scope, forward and stepwise selection methods are proposed. A statistical hypothesis test is used as an elimination criterion. The suggested methods are used to predict the surface roughness in turning operations effectively. Successful results were obtained in the prediction of surface roughness by using these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

K :

Tool stiffness coefficient (N/m)

CD:

Cutting depth (mm)

OL:

Tool overhang length (mm)

S :

Tool damping ratio (%)

SRA:

Side rake angle (\(^{\circ }\))

ECA:

End cutting angle (\(^{\circ }\))

NR:

The number of revolutions per minute (rpm)

WD:

Workpiece diameter (mm)

BRA:

Back rake angle (\(^{\circ }\))

IH:

Insert hardness (HV)

SCA:

Side clearance angle (\(^{\circ }\))

AA:

Approach angle (\(^{\circ }\))

WH:

Workpiece hardness (HV)

References

  1. Davim, J.P.: Surface Integrity in Machining. Springer Science & Business Media, Berlin (2010)

    Book  Google Scholar 

  2. Abuelnaga, A.M.; El-Dardiry, M.A.: Optimization methods for metal cutting. Int. J. Mach. Tool Des. Res. 24(1), 11–18 (1984)

    Article  Google Scholar 

  3. Aggarwal, A.; Singh, H.: Optmization of machining technique—a retrospective and literature review. Sadhand 30(6), 699–711 (2005)

    Article  MATH  Google Scholar 

  4. Mukherjee, I.; Ray, P.K.: A review of optimization techniques in metal cutting processes. Comput. Ind. Eng. 50(1), 15–34 (2006)

    Article  Google Scholar 

  5. Kurdi, M.H.; Schmitz, T.L.; Haftka, R.T.; Mann, B.P.: Simultaneous optimization of material removal rate and part accuracy in high speed milling. In: ASME International Mechanical Engineering Congress and Exposition (IMECE), pp. 1001–1009 (2004)

  6. Kurdi, M.H.: Robust multicriteria optimization of surface location error and material removal rate in high speed milling under uncertainty. Department of Mechanical and Aerospace Engineering, University of Florida (2005)

  7. Krishna, A.: Selection of optimal conditions in the surface grinding process using a differential evolution approach. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 221(7), 1185–1192 (2007)

    Article  Google Scholar 

  8. Saikumar, S.; Shunmugan, M.S.: Parameter selection based on surface finish in high speed finish in high speed end milling using differential evolution. Mater. Manuf. Process. 21(4), 341–347 (2008)

    Article  Google Scholar 

  9. Walvekar, A.G.; Lambert, B.K.: An application of geometric programming to machining variable selection. Int. J. Prod. Res. 8(3), 241–245 (1970)

    Article  Google Scholar 

  10. Sonmez, A.I.; Baykasoglu, A.; Dereli, T.; Filiz, I.H.: Dynamic optimization of multipass milling operations via geometric programming. Int. J. Mach. Tools Manuf. 39(2), 297–320 (1999)

    Article  Google Scholar 

  11. Abburi, N.; Dixit, U.: Multi-objective optimization of multipass turning processes. Int. J. Adv. Manuf. Technol. 32(9), 902–910 (2007)

    Article  Google Scholar 

  12. Lin, T.R.: Optimisation technique for face milling stainless steel with multiple performance characteristics. Int. J. Adv. Manuf. Technol. 19(5), 330–335 (2002)

    Article  Google Scholar 

  13. Bajic, D.; Lela, B.; Zivkovic, D.: Modeling of machined surface roughness and optimization of cutting parameters in face milling. Metalurgija 47(4), 331–334 (2008)

    Google Scholar 

  14. Subramanian, M.; Sakthivel, M.; Sooryaprakash, K.; Sudhakaran, R.: Optimization of end mill tool geometry parameters for Al7075-T6 machining operations based on vibration amplitude by response surface methodology. Measurement 46(10), 4005–4022 (2013)

    Article  Google Scholar 

  15. Venkatesan, K.; Ramanujam, R.; Joel, J.; Jeyapandiarajan, P.; Vignesh, M.; Tolia, D.J.; Krishna, R.V.: Study of cutting force and surface roughness in machining of Al alloy hybrid composite and optimized using response surface methodology. Proc. Eng. 97, 677–686 (2014)

    Article  Google Scholar 

  16. Ramesh, S.; Karunamoorthy, L.; Palanikumar, K.: Surface roughness analysis in machining of titanium alloy. Mater. Manuf. Process. 23, 174–181 (2008)

    Article  Google Scholar 

  17. Ramesh, S.; Karunamoorthy, L.; Palanikumar, K.: Measurement and analysis of surface roughness in turning of aerospace titanium alloy (Gr5). Measurement 45, 1266–1276 (2012)

    Article  Google Scholar 

  18. Rajmohan, T.; Palanikumar, K.: Application of the central composite design in optimization of machining parameters in drilling hybrid metal matrix composites. Measurement 46, 1470–1481 (2013)

    Article  Google Scholar 

  19. Budak, E.: Improving productivity and part quality in milling of titanium based impellers by chatter suppression and force control. CIRP Ann. Manuf. Technol. 49(1), 31–36 (2000)

    Article  Google Scholar 

  20. El-Mounayri, H.; Kishawy, H.; Briceno, J.: Optimization of CNC ball end milling: a neural network-based model. J. Mater. Process. Technol. 166(1), 50–62 (2005)

    Article  Google Scholar 

  21. Juan, H.; Yu, S.F.; Lee, B.Y.: The optimal cutting-parameter selection of production cost in HSM for SKD61 tool steels. Int. J. Mach. Tools Manuf. 43(7), 679–686 (2003)

    Article  Google Scholar 

  22. Wang, Z.G.; Rahman, M.; Wong, Y.S.; Sun, J.: Optimization of multi-pass milling using parallel genetic algorithm and parallel genetic simulated annealing. Int. J. Mach. Tools Manuf. 45(15), 1726–1734 (2005)

    Article  Google Scholar 

  23. Yajun, J.; Zhenliang, L.; Minghui, L.: Application of fuzzy and rough sets theory in the optimization of machining parameters for mold milling operations. Int. J. Adv. Manuf. Technol. 28(11), 1071–1077 (2006)

    Article  Google Scholar 

  24. Parent, L.; Songmene, V.; Kenne, J.P.: A generalised model for optimising and end milling operation. Prod. Plan. Control 18(4), 319–337 (2007)

    Article  Google Scholar 

  25. Savas, V.; Ozay, C.: The optimization of the surface roughness in the process of tangential turn-milling using genetic algorithm. Int. J. Adv. Manuf. Technol. 37(3–4), 335–340 (2007)

    Google Scholar 

  26. Mahdavinejad, R.A.; Khani, N.; Fakhrabadi, M.M.S.: Optimization of milling parameters using artificial neural network and artificial immune system. J. Mech. Sci. Technol. 26, 4097–4104 (2012)

    Article  Google Scholar 

  27. Davim, J.P.: Design of optimisation of cutting parameters for turning metal matrix composites based on the orthogonal arrays. J. Mater. Process. Technol. 132, 340–344 (2003)

    Article  Google Scholar 

  28. Al Hazza, M.H.F.; Adesta, E.Y.T.; Hasan, M.H.; Shaffiar, N.: Surface roughness modeling in high speed hard turning using regression analysis. Int. Rev. Mech. Eng. 8, 431–436 (2014)

    Google Scholar 

  29. Gaitonde, V.N.; Karnik, S.; Figueira, L.; Davim, J.P.: Performance comparison of conventional and wiper ceramic inserts in hard turning through artificial neural network modeling. Int. J. Adv. Manuf. Technol. 52, 101–114 (2011)

    Article  Google Scholar 

  30. Kumar, R.; Chauhan, S.: Study on surface roughness measurement for turning of Al 7075/10/SiCp and Al 7075 hybrid composites by using response surface methodology (RSM) and artificial neural networking (ANN). Measurement 65, 166–180 (2015)

    Article  Google Scholar 

  31. Sahoo, A.; Rout, A.; Das, D.: Response surface and artificial neural network prediction model and optimization for surface roughness in machining. Int. J. Ind. Eng. Comput. 6, 229–240 (2015)

    Google Scholar 

  32. Acayaba, G.M.A.; de Escalona, P.M.: Prediction of surface roughness in low speed turning of AISI316 austenitic stainless steel. CIRP J. Manuf. Sci. Technol. 11, 62–67 (2015)

    Article  Google Scholar 

  33. Karabulut, S.: Optimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and Taguchi method. Measurement 66, 139–149 (2015)

    Article  Google Scholar 

  34. Yegnanarayana, B.: Artificial Neural Networks. PHI Learning Pvt. Ltd, New Delhi (2009)

  35. Rosenthal, G.; Rosenthal, J.A.: Statistics and Data Interpretation for Social Work. Springer, Berlin (2011)

    Google Scholar 

  36. Antony, J.: Design of Experiments for Engineers and Scientists. Elsevier, Amsterdam (2014)

    Google Scholar 

  37. www.matweb.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Alper Sofuoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arapoğlu, R.A., Sofuoğlu, M.A. & Orak, S. An ANN-Based Method to Predict Surface Roughness in Turning Operations. Arab J Sci Eng 42, 1929–1940 (2017). https://doi.org/10.1007/s13369-016-2385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2385-y

Keywords

Navigation