Skip to main content
Log in

Smoke Priming Regulates Growth and the Expression of Myeloblastosis and Zinc-Finger Genes in Rice under Salt Stress

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Salinity negatively affects the rice growth and productivity around the globe including Pakistan. The current study describes about the application of new approach of smoke solution priming, which was used to overcome the deteriorating effect of salinity by investigating its affects on biochemical and molecular attributes of rice crop. Seeds of two rice varieties (Basmati-385 and Shaheen Basmati) were soaked in smoke solution for 24 h. Smoke-soaked seeds were used to evaluate its effect on plant fresh and dry biomass, elemental uptake and expression of myeloblastosis (MYB) and zinc-finger (ZAT12) genes against different levels of NaCl (0, 50, 100 and 150 mM). Fresh and dry biomass of plant was decreased with increasing level of salt stress, while plant raised from smoke-primed seeds had lowers the adverse effect of salt stress. Concentration of sodium ion and \(\hbox {Na}^{+}/\hbox {K}^{+ }\)ratio was increased, while potassium ion concentration was decreased with increasing salt concentration in the medium. The amount of sodium ion was noted higher in roots than shoots, while potassium was in low amount in roots than shoot. Smoke solution reduced the harmful effect of salt stress by reducing the uptake of sodium ion and increasing potassium ions both in roots and in shoots. The expression of MYB and ZAT12 genes was checked by using RT-PCR approach. Result shows that MYB and ZAT12 protein genes were expressed differently under various levels of salt stress, while priming with the smoke solution changed the expression profile of MYB and ZAT12 protein genes by alleviating the drastic effect. It was concluded that priming with smoke solution protects the plants from ionic toxicity, shows promising effect on rice growth and can be used for enhancing crop productivity under saline condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Osakabe, Y.; Kajita, S.; Osakabe, K.: Genetic engineering of woody plants, current and future targets in a stressful environment. Physiol. Plant. 142, 105–117 (2011)

    Article  Google Scholar 

  2. Amirjani, M.R.: Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int. J. Bot. 7, 73–81 (2011)

    Article  Google Scholar 

  3. Zhu, J.K.: Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 4, 401–406 (2001)

    Article  Google Scholar 

  4. Ashraf, M.: Inducing drought tolerance in plants, some recent advances. Biotechnol. Adv. 28, 169–183 (2010)

    Article  Google Scholar 

  5. Bartels, D.S.R.: Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24, 23–58 (2005)

    Article  Google Scholar 

  6. Yokoi, S.; Quintero, F.J.; Cubero, B.; Ruiz, M.T.; Bressan, R.A.; Hasegawa, P.M.; Pardo, J.M.: Differential expression and function of Arabidopsis thaliana NHX \(\text{ Na }^{+}/\text{ H }^{+}\)antiporters in the salt stress response. Plant J. 30, 529–539 (2002)

    Article  Google Scholar 

  7. Chen, Y.H.; Yang, X.Y.; He, K.: The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol. Biol. 60, 107–124 (2006)

    Article  Google Scholar 

  8. Yang, A.; Dai, X.; Zhang, W.: A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J. Exp. Bot. 63, 2541–2556 (2012)

    Article  Google Scholar 

  9. Davletova, S.; Rizhsky, L.; Liang, H.; Shengqiang, Z.; Oliver, D.J.; Coutu, J.; Shulaev, V.; Schlauch, K.; Mittler, R.: Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268–281 (2005)

    Article  Google Scholar 

  10. Cheong, Y.H.; Chang, H.S.; Gupta, R.; Wang, X.; Zhu, T.; Luan, S.: Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129, 661–677 (2002)

    Article  Google Scholar 

  11. Fowler, S.; Thomashow, M.F.: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14, 1675–1690 (2002)

    Article  Google Scholar 

  12. Kreps, J.A.; Wu, Y.J.; Chang, H.S.; Zhu, T.; Wang, X.; Harper, J.F.: Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130, 129–2141 (2002)

    Article  Google Scholar 

  13. Iida, A.; Kazuoka, T.; Torikai, S.; Kikuchi, H.; Oeda, K.: A zinc finger protein RHL41 mediates the light acclimatization response in Arabidopsis. Plant J. 24, 191–203 (2000)

    Article  Google Scholar 

  14. Rizhsky, L.; Liang, H.; Shuman, J.; Shulaev, V.; Davletova, S.; Mittler, R.: When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134, 1683–1696 (2004)

    Article  Google Scholar 

  15. Farooq, M.; Basra, S.; Rehman, H.; Hussain, M.; Amanat, Y.: Pre-sowing salicylicate seed treatments improve the germination and early seedling growth in fine rice. Pak. J. Sci. 44, 44–47 (2007)

    Google Scholar 

  16. Lee, S.S.; Kim, J.H.; Hong, S.B.; Yuu, S.H.; Park, E.H.: Priming effect of rice seeds on seedling establishment under adverse soil conditions. Korean J. Crop Sci. 43, 194–198 (1998)

    Google Scholar 

  17. Dixon, K.W.; Merritt, D.J.; Flematti, G.R.; Ghisalberti, E.L.: Karrikinolide, a phytoreactive compound derived from smoke with applications in horticulture, ecological restoration and agriculture. Acta Hort. 813, 155–17 (2009)

    Article  Google Scholar 

  18. Van-Staden, J.; Sperg, S.G.; Kulkarni, M.G.; Light, M.E.: Post Germination effect of the Smoke derived compound 3-methyl-2H-furo [2,3-c] pyran-2-one and its potential as a pre conditioning agent. Field Crop Res. 98, 98–105 (2006)

    Article  Google Scholar 

  19. Daws, M.I.; Davies, J.; Pritchard, H.W.; Brown, N.A.C.; Van Staden, J.: Butenolide from plant-derived smoke enhances germination and seedling growth of arable weed species. Plant Growth Regul. 51, 73–82 (2007)

    Article  Google Scholar 

  20. Jamil, M.; Malook, I.; Parveen, S.; Naz, T.; Ali, A.; Jan, S.U.; Rehman, S.U.: Smoke, potent protective agent against salinity, effect on proline accumulation, elemental uptake, pigmental attributes and proline banding patterns of Rice (Oryza sativa). J. Stress Physiol. Biochem. 9, 169–183 (2013)

    Google Scholar 

  21. Jain, N.; Kulkarni, M.G.; Van Staden, J.: A butenolide, isolated from smoke, can overcome the detrimentaleffects of extreme temperatures during tomato seed germination. Plant Growth Regul. 49, 263–267 (2006)

    Article  Google Scholar 

  22. Tieu, A.; Dixon, K.A.; Sivasithamparam, K.; Plummer, J.A.: Germination of four species of native Western Australian plant using plant-derived smoke. Aust. J. Bot. 47, 207–219 (1999)

    Article  Google Scholar 

  23. Hoagland, D.R.; Arnon, D.I.: The water culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 347, 32 (1950)

    Google Scholar 

  24. Awan, J.A.; Salim, U.R.: Food analysis manual. Vet Agric Publ 5, 2–7 (1997)

    Google Scholar 

  25. Jain, N.; Van Staden, J.: The potential of the smoke derived compound 3-methyl-2H-furo [2,3-c]pyran-2-one as a priming agent for tomato seeds. Seed Sci. Res. 17, 175–181 (2007)

    Article  Google Scholar 

  26. Ebrahimi, H.R.; Aref, F.; Rezaei, M.: Evaluation of salinity stress affects rice growth and yield components in Northern Iran. Am. J. Sci. Res. 54, 40–51 (2012)

    Google Scholar 

  27. Tester, M.; Davenport, R.J.: \(\text{ Na }^{+}\) transport and \(\text{ Na }^{+}\) tolerance in higher plants. Ann. Bot. 91, 503–527 (2003)

    Article  Google Scholar 

  28. Yeo, A.R.; Flowers, T.J.: Accumulation and localization of sodium ions within the shoots of rice (Oryza sativa) varieties differing in salinity resistance. Physiol. Plant. 56, 343–348 (1982)

    Article  Google Scholar 

  29. Garcia, A.; Rizzo, C.A.; Ud-Din, J.; Bartos, S.L.; Senadhira, D.: Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium: potassium selectivity differs between rice and wheat. Plant Cell Environ. 20, 1167–1174 (1997)

    Article  Google Scholar 

  30. Jamil, M.; Bashir, S.; Anwar, S.; Bibi, S.; Bangash, A.; Ullah, F.; Rha, E.S.: Effect of salinity on physiological and biochemical characteristics of different varieties of rice. Pak. J. Bot. 44, 7–13 (2012)

    Google Scholar 

  31. Anjum, A.; Abdin, M.A.; Iqbal, M.: Ameliorative effects of \(\text{ CaCl }_{2}\) on growth, ionic relations and proline content of senna under salinity stress. J. Plant Nutr. 28, 101–125 (2005)

    Article  Google Scholar 

  32. Araya, F.; Abarca, O.; Zuniga, G.E.; Corcuera, L.J.: Effects of NaCl on glycine betaine and on aphids in cereal seedlings. Phytochem. 30, 1793–1795 (1991)

    Article  Google Scholar 

  33. Weimberg, R.: Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiol. Plant. 70, 381–388 (1987)

    Article  Google Scholar 

  34. Flowers, T.J.: Improving crop salt tolerance. J. Exp. Bot. 55, 307–319 (2004)

    Article  Google Scholar 

  35. Fritioff, A.; Kautsky, L.; Greger, M.: Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ. Pollut. 133, 265–274 (2005)

    Article  Google Scholar 

  36. Yasin, M.; Rashid, M.T.; Arain, M.Y.: Intervarietal variability in rice for sodicity tolerance. Pak. J. Agric. Res. 17, 2 (2002)

    Google Scholar 

  37. Zhu, J.K.: Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 4, 401–406 (2002)

    Google Scholar 

  38. Zhu, J.K.: Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6, 441–445 (2003)

    Article  Google Scholar 

  39. Van Staden, J.; Jager, A.K.; Strydom, A.: Interaction between a plant-derived smoke extract, light and phytohormones on the germination of light-sensitive lettuce seeds. Plant Growth Regul. 17, 213–218 (1995)

  40. Ptashne, M.: How eukaryotic transcriptional activator work. Nature 335, 683–689 (1988)

    Article  Google Scholar 

  41. Lippold, F.; Sanchez, D.H.; Musialak, M.; Schlereth, A.; Scheible, W.R.; Hincha, D.K.; Udvardi, M.K.: AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiol. 149, 1761–1772 (2009)

    Article  Google Scholar 

  42. Urao, T.; Yamaguchi-Shinozaki, K.; Urao, S.; Shinozaki, K.: An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 15, 1529–1539 (1993)

    Article  Google Scholar 

  43. Abe, H.; Urao, T.; Ito, T.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K.: Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63–78 (2003)

    Article  Google Scholar 

  44. Yang, J.C.; Zhang, J.H.; Wang, Z.Q.; Zhu, Q.S.; Wang, W.: Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol. 127, 315–323 (2001)

    Article  Google Scholar 

  45. Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L.: MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573–81 (2010)

    Article  Google Scholar 

  46. Zhang, M.; Kimatu, J.N.; Xu, K.; Liu, B.: DNA cytosine methylation in plant development. J. Genet. Genomics 37, 1–12 (2010)

    Article  Google Scholar 

  47. Harris, D.: The effects of manure, genotype, seedlings, seed priming, depth and date of sowing on the emergence and early growth of Sorghum bicolor (L.) Moench in semi-arid Botswana. Soil Tillage Res. 40, 73–88 (1996)

    Google Scholar 

  48. Murungu, F.S.; Chiduza, C.; Nyamugafata, P.; Clark, L.J.; Whalley, W.R.: Effects of seed priming, aggregate size and soil matric potential on emergence of cotton (Gossypium hirsutum L.) and maize (Zea mays L.). Soil Tillage Res. 74, 161–168 (2003)

    Article  Google Scholar 

  49. Murungu, F.S.; Chiduza, C.; Nyamugafata, P.; Clark, L.J.; Whalley, W.R.; Finch-Savage, W.E.: Effects of ‘on-farm seed priming’ on consecutive daily sowing occasions on the emergence and growth of maize in semi-arid Zimbabwe. Field Crops Res. 89, 49–57 (2004)

    Article  Google Scholar 

  50. Murungu, F.S.; Chiduza, C.; Nyamugafata, P.; Clark, L.J.; Whalley, W.R.: Effects of seed priming and water potential on germination of cotton (Gossypium hirsutum L.) and maize (Zea mays L.) in laboratory assays. S. Afr. J. Plant Soil 22, 64–70 (2005)

    Article  Google Scholar 

  51. Conrath, U.; Beckers, G.J.M.; Flors, V.; Garcia-Agustin, P.; Jakab, G.; Mauch, F.; Newman, M.A.; Pieterse, C.M.J.; Poinssot, B.; Pozo, M.J.; Pugin, A.; Schaffrath, U.; Ton, J.; Wendehenne, D.; Zimmerli, L.; Mauch-Mani, B.: Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by HEC through research Grant No. 1348, Pakistan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Jamil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malook, I., Shah, G., Jan, M. et al. Smoke Priming Regulates Growth and the Expression of Myeloblastosis and Zinc-Finger Genes in Rice under Salt Stress. Arab J Sci Eng 42, 2207–2215 (2017). https://doi.org/10.1007/s13369-016-2378-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2378-x

Keywords

Navigation