Skip to main content
Log in

Natural Convective Heat Transfer Flow of Nanofluids Inside a Quarter-Circular Enclosure Using Nonhomogeneous Dynamic Model

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we have studied the problem of two-dimensional transient convective flow and heat transfer in nanofluids in a quarter-circular-shaped enclosure using newly proposed nonhomogeneous dynamic mathematical model. The round wall of the enclosure is maintained at constant low temperature and the variable thermal condition on the bottom heated wall is considered, whereas the vertical wall is regarded as adiabatic. The enclosure is permeated by an inclined uniform magnetic field. The Galerkin weighted residual finite element method has been employed to solve the governing nondimensional partial differential equations. The result shows that 1- to 10-nm-sized nanoparticles are uniform and stable in the solution. The external magnetic field and its direction control the flow pattern of nanofluid significantly. The average Nusselt number increases significantly, as nanoparticle volume fraction, magnetic field inclination angle and Rayleigh number increase. Average Nusselt number of cobalt–kerosene nanofluid is much higher than other 17 types of nanofluids which are studied in the present analysis. The flow behaviors and the heat transfer rates of 18 types of nanofluids have been presented for the scientific and engineering community to become familiar with such nanofluids and apply them in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

Applied magnetic field (Nm\(^{-1}\) A\(^{-1}\))

C :

Concentration of nanofluid \((\hbox {mol}\,\hbox {m}^{-3})\)

\(C_\mathrm{C}\) :

Reference concentration \(\hbox {(mol m}^{3})\)

\(c_\mathrm{p}\) :

Specific heat \(\hbox {(J}\,\hbox {kg}^{-1} \hbox {K}^{-1})\)

\(D_\mathrm{B}\) :

Brownian diffusion coefficient \( \hbox {(m}^{2}\,\hbox {s}^{-1})\)

\(d_\mathrm{p}\) :

Diameter of nanoparticle \((\hbox {nm)}\)

\(D_\mathrm{T}\) :

Thermal diffusion coefficient \(\hbox {(m}^{2}\,\hbox {s}^{-1})\)

g :

Acceleration due to gravity \((\hbox {m}\,\hbox {s}^{-2})\)

h :

Heat transfer coefficient of nanofluid \(\hbox {(W}\,\hbox {m}^{-2}\,\hbox {K}^{-1})\)

\(k_\mathrm{B}\) :

Boltzmann constant \(\hbox {(J}\,\hbox {K}^{-1})\)

L :

Length of the bottom wall \(\hbox {(m)}\)

Le :

Lewis number

m :

Mass \(\hbox {(kg)}\)

n :

Empirical nanoparticle shape factor

\(N_\mathrm{TBTC} \) :

Dynamic diffusion parameter

\(N_\mathrm{TBT}\) :

Dynamic thermo-diffusion parameter

Nu :

Nusselt number

p :

Dimensional modified pressure \(\hbox {(Pa)}\)

P :

Dimensionless modified pressure

Pr :

Prandtl number

\(Ra_\mathrm{T} \) :

Thermal Rayleigh number

\(Ra_\mathrm{C}\) :

Solutal Rayleigh number

Sc :

Schmidt number

Ha :

Hartmann number

Sr :

Shear rate \(\hbox {(s}^{-1})\)

t :

Dimensional time \(\hbox {(s)}\)

T :

Nanofluid temperature \(\hbox {(K)}\)

\(T_\mathrm{C} \) :

Reference temperature \(\hbox {(K)}\)

UV :

Dimensionless nanofluid velocity

(uv):

Dimensional nanofluid velocity \(\hbox {(m}\,\hbox {s}^{-1})\)

\(V_\mathrm{T}\) :

Thermophoretic velocity \(\hbox {(m}\,\hbox {s}^{-1})\)

XY :

Dimensionless coordinates

\(\alpha \) :

Thermal diffusivity \(\hbox {(m}^2\,\hbox {s}^{-1})\)

\(\beta \) :

Thermal expansion coefficient \(\hbox {(K}^{-1}) \quad \)

\(\Omega \) :

Angle between hot and cold walls (radian)

\(\beta ^{*}\) :

Mass expansion coefficient \(\hbox {(mol)}^{-1}\)

\(\gamma \) :

Magnetic field inclination angle

\(\phi \) :

Nanoparticles volume fraction

\(\Phi \) :

Dimensionless concentration

\(\Psi \) :

Sphericity of the nanoparticle

\(\psi \) :

Stream function

\(\mu \) :

Viscosity \(\hbox {(kg}\,\hbox {m}^{-1}\,\hbox {s}^{-1})\)

\(\nu \) :

Kinematic viscosity \(\hbox {(m}^2\,\hbox {s}^{-1})\)

\(\kappa \) :

Thermal conductivity \(\hbox {(W}\,\hbox {m}^{-1}\,\hbox {K}^{-1})\)

\(\sigma \) :

Electric conductivity \((\hbox {S}\,\hbox {m}^{-1})\)

\(\Delta C\) :

Film concentration drop \(\hbox {(mol}\,\hbox {m}^{-3})\)

\(\Delta T\) :

Film temperature drop \(\hbox {(K)}\)

\(\theta \) :

Dimensionless temperature

\(\theta _\mathrm{C} \) :

Dimensionless temperature at cold wall

\(\theta _\mathrm{h} \) :

Dimensionless temperature at hot wall

\(\rho \) :

Density \(\hbox {(kg}\,\hbox {m}^{-3})\)

:

Correction factor

\(\xi \) :

Dimensionless time

bf:

Base fluid

p:

Nanoparticles

nf:

Nanofluid

ave:

Average

References

  1. Omri, A.; Orfi, J.; Nasallah, S.B.: Natural convection effects in solar stills. Desalination 183, 173–178 (2005)

    Article  Google Scholar 

  2. Tzeng, S.C.; Liou, J.H.; Jou, R.Y.: Numerical simulation-aided parametric analysis of natural convection in a roof of triangular enclosures. Heat Transf. Eng. 26, 69–79 (2005)

    Article  Google Scholar 

  3. Choi, S.U.S.: Nanofluids: from vision to reality through research. J. Heat Transf. 131, 1–9 (2009)

    Article  Google Scholar 

  4. Rahman, M.M.; Al-Rashdi, M.H.; Pop, I.: Convective boundary layer flow and heat transfer in a nanofluid in the presence of second order slip, constant heat flux and zero nanoparticles flux. Nucl. Eng. Des. 297, 95–103 (2016)

    Article  Google Scholar 

  5. Eastman, J.A.; Choi, S.U.S.; Li, S.; Yu, W.; Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720 (2001)

    Article  Google Scholar 

  6. Das, S.K.; Putra, N.; Thiesen, P.; Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125(4), 567–574 (2003)

    Article  Google Scholar 

  7. Xuan, Y.; Li, Q.: Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transf. 125(1), 151–155 (2003)

    Article  Google Scholar 

  8. Wen, D.; Ding, Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Transf. 47(24), 5181–5188 (2004)

    Article  Google Scholar 

  9. Uddin, M.J.; Al Kalbani, K.S.; Rahman, M.M.; Alam, M.S.; Al-Salti, N.; Eltayeb, I.A.: Fundamentals of nanofluids: evolution, applications and new theory. Int. J. Biomath. Syst. Biol. 2(1), 1–32 (2016)

    Google Scholar 

  10. Xuan, Y.; Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43(19), 3701–3707 (2000)

    Article  MATH  Google Scholar 

  11. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)

    Article  Google Scholar 

  12. Rahman, M.M.; Rosca, A.V.; Pop, I.: Boundary layer flow of a nanofluid past a permeable exponentially shrinking surface with convective boundary condition using Buongiorno’s model. Int. J. Numer. Methods Heat Fluid Flow 25(2), 299–319 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sheremet, M.A.; Pop, I.: Mixed convection in a lid- driven square cavity filled by a nanofluid: Buongiorno’s mathematical model. Appl. Math. Comput. 266, 792–808 (2015)

    MathSciNet  Google Scholar 

  14. Rahman, M.M.; Grosan, T.; Pop, I.: Oblique stagnation-point flow of a nanofluid past a shrinking sheet. Int. J. Numer. Methods Heat Fluid Flow 26(1), 189–213 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rahman, M.M.; Alam, M.S.; Al-Salti, N.; Eltayeb, I.A.: Hydromagnetic natural convective heat transfer flow in an isosceles triangular cavity filled with nanofluid using two-component nonhomogeneous model. Int. J. Therm. Sci. 107, 272–288 (2016)

    Article  Google Scholar 

  16. Ouyahia, S.; Benkahla, Y.K.; Labsi, N.: Numerical study of the hydrodynamic and thermal proprieties of titanium dioxide nanofluids trapped in a triangular geometry. Arab. J. Sci. Eng. 41, 1995–2009 (2016)

    Article  Google Scholar 

  17. Khanafer, K.; Vafai, K.; Lightstone, M.: Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46(19), 3639–3653 (2003)

    Article  MATH  Google Scholar 

  18. Jou, R.; Tzeng, S.: Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures. Int. Commun. Heat Mass Transf. 33(6), 727–736 (2006)

    Article  Google Scholar 

  19. Tiwari, R.K.; Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50(9–10), 2002–2018 (2007)

    Article  MATH  Google Scholar 

  20. Rahman, M.M.; Mojumder, S.; Saha, S.; Mekhilef, S.; Saidur, R.: Effect of solid volume fraction and tilt angle in a quarter circular solar thermal collectors filled with CNT-water nanofluid. Int. Commun. Heat Mass Transf. 57, 79–90 (2014)

    Article  Google Scholar 

  21. Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Soleimani, S.: Effect of a magnetic field on natural convection in an inclined half-annulus enclosure filled with Cu-water nanofluid using CVFEM. Adv. Powder Technol. 24, 980–991 (2013)

    Article  Google Scholar 

  22. Maxwell, J.A.: A Treatise on Electricity and Magnetism, vol. I–II. Clarendon Press, Oxford (1873)

    MATH  Google Scholar 

  23. Hamilton, R.L.; Crosser, Ok: Thermal conductivity of heterogeneous two component systems. Ind. Eng. Chem. Fundam. 1(3), 187–191 (1962)

    Article  Google Scholar 

  24. Timofeeva, E.V.; Routbort, J.L.; Singh, D.: Particle shape effects on thermophysical properties of alumina nanofluids. J. Appl. Phys. 106(1), 1–10 (2009)

    Article  Google Scholar 

  25. Xuan, Y.; Li, Q.; Hu, W.: Aggregation structure and thermal conductivity of nanofluids. AIChE J. 49(4), 1038–1043 (2003)

    Article  Google Scholar 

  26. Shiundu, P.M.; Williams, P.S.; Giddings, J.C.: Magnitude and direction of thermal diffusion of colloidal particles measured by thermal field-flow fractionation. J. Colloid Interface Sci. 266(2), 366–376 (2003)

    Article  Google Scholar 

  27. Iacopini, S.; Rusconi, R.; Piazza, R.: The macromolecular tourist: universal temperature dependence of thermal diffusion in aqueous colloidal suspensions. Eur. Phys. J. E 19(1), 59–67 (2006)

    Article  Google Scholar 

  28. Mutuku, W.N.: Analysis of hydromagnetic boundary layer flow and heat transfer of nanofluids. Ph.D. Thesis, Cape Cape Peninsula University of Technology, South Africa (2014)

  29. Zienkiewicz, O.C.; Taylor, R.L.; Nithiarasu, P.: The Finite Element Method for Fluid Dynamics, 6th edn. Elsevier, Amsterdam (2005)

  30. Codina, R.: Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Eng. 156(1–4), 185–210 (1998)

  31. Rahman, M.M.; Alim, M.A.; Mamun, M.A.H.: Finite element analysis of mixed convection in a rectangular cavity with a heat-conducting horizontal circular cylinder. Nonlinear Anal. Model. Control 14(2), 217–247 (2009)

  32. Rahman, M.M.; Parvin, S.; Saidur, R.; Rahim, N.A.: Magnetohydrodynamic mixed convection in a horizontal channel with an open cavity. Int. Commun. Heat Mass Transf. 38, 184–193 (2011)

    Article  Google Scholar 

  33. Uddin, M.B.: Magnetic field effect on double-diffusive mixed convection in a lid driven trapezoidal enclosure for unsteady flow. Dhaka, BUET, M. Phil. Thesis (2015)

  34. Del Campo, E.M.; Sen, M.; Ramos, E.: Analysis of laminar natural convection in triangular enclosure. Numer. Heat Transf. 13(3), 353–372 (1988)

    Article  Google Scholar 

  35. Ghasemi, B.; Aminossadati, S.M.; Raisi, A.: Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Therm. Sci. 50, 1748–1756 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Rahman.

Additional information

M. S. Alam: On leave from the Department of Mathematics, Jagannath University, Dhaka, Bangladesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, M.J., Alam, M.S. & Rahman, M.M. Natural Convective Heat Transfer Flow of Nanofluids Inside a Quarter-Circular Enclosure Using Nonhomogeneous Dynamic Model. Arab J Sci Eng 42, 1883–1901 (2017). https://doi.org/10.1007/s13369-016-2330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2330-0

Keywords

Navigation