Optimum Design of Fractional-Order Hybrid Fuzzy Logic Controller for a Robotic Manipulator

Abstract

The robotic manipulators are complex and coupled nonlinear systems. Therefore, the designing of an effective controller for these systems is quite complicated. The main hurdle in operating these systems is the inter-linkage between the links, and this can be removed by using any decoupling method. The decoupling between the links is not a good idea from the viewpoint of practical applications. In this paper, a fractional-order hybrid fuzzy logic controller (FOHFLC) scheme is developed for a two-degree-of-freedom rigid planar robotic manipulator with payload (2-DOF RPRMWP) plant for the trajectory tracking. The cuckoo search algorithm (CSA) is utilized for finding the optimal parameters of the proposed approach. For witnessing the effectiveness, the performance of proposed FOHFLC scheme is compared with integer-order hybrid FLC (IOHFLC) approach and conventional PID controller. The robustness testing is investigated for parameter variations and disturbance rejection for the proposed controller schemes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Lian, R.-J.; Lin, B.-F.: Design of a mixed fuzzy controller for multiple-input multiple-output systems. Mechatronics 15, 1225–1252 (2005)

    Article  Google Scholar 

  2. 2.

    Lee, C.C.: Fuzzy logic in control systems: fuzzy logic controller-part 1. IEEE Trans. Syst. Man Cybern. 20(2), 404–418 (1990)

    Article  MATH  Google Scholar 

  3. 3.

    Ohtani, Y.; Yoshimura, T.: Fuzzy control of a manipulator using the concept of sliding mode. Int. J. Syst. Sci. 27(2), 179–186 (1996)

    Article  MATH  Google Scholar 

  4. 4.

    Hazzab, A.; Bousserhane, I.K.; Zerbo, M.; Sicard, P.: Real-time implementation of fuzzy gain scheduling of PI controller for induction motor machine control. Neural Process. Lett. 24, 203–215 (2005)

    Article  Google Scholar 

  5. 5.

    Xu, C.; Shin, Y.C.: A multilevel fuzzy control design for a class of multi input single-output systems. IEEE Trans. Ind. Electron. 59(8), 3113–3123 (2012)

    Article  Google Scholar 

  6. 6.

    Huo, B.; Li, Y.; Tong, S.: Fuzzy adaptive fault-tolerant output feedback control of multi-input and multi-output non-linear systems in strict-feedback form. IET Control Theory Appl. 6(17), 2704–2715 (2012)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Tong, S.; Sui, S.; Li, Y.: Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Trans. Fuzzy Syst. 23(4), 729–742 (2015)

    Article  Google Scholar 

  8. 8.

    Yadav, A.K.; Gaur, P.: An optimized and improved STF-PID speed control of throttle controlled HEV. Arab. J. Sci. Eng. 41(9), 1–12 (2016)

    Article  Google Scholar 

  9. 9.

    Su, Y.; Xu, L.; Li, D.: Adaptive fuzzy control of a class of MIMO nonlinear system with actuator saturation for greenhouse climate control problem. IEEE Trans. Autom. Sci. Eng. 13(2), 772–788 (2016)

    Article  Google Scholar 

  10. 10.

    Song, Z.; Yi, J.; Zhao, D.; Li, X.: A computed torque controller for uncertain robotic manipulator systems: fuzzy approach. Fuzzy Sets Syst. 154, 208–226 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Meza, J.L.; Santianez, V.; Soto, R.; Llama, M.A.: Fuzzy self-tuning PID semiglobal regulator for robotic manipulators. IEEE Trans. Ind. Electron. 59(6), 2709–2717 (2012)

    Article  Google Scholar 

  12. 12.

    Chu, Z.Y.; Cui, J.; Sun, F.: Fuzzy adaptive disturbance-observer based robust tracking control of electrically driven free-floating space manipulator. IEEE Syst. J. 8(2), 343–351 (2014)

    Article  Google Scholar 

  13. 13.

    Chiu, C.-S.: Mixed feedforward/feedback based adaptive fuzzy control for a class of MIMO nonlniear systems. IEEE Trans. Fuzzy Syst. 14(6), 716–727 (2006)

    Article  Google Scholar 

  14. 14.

    Baghli, F.Z.; Bakkali, L.E.; Lakhal, Y.: Multi-input multi-output fuzzy logic controller for complex system: application on two-links manipulator. Proc. Technol. 19, 607–614 (2015)

    Article  Google Scholar 

  15. 15.

    Das, S.; Pan, I.; Das, S.; Gupta, A.: A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Eng. Appl. Artif. Intell. 25, 430–442 (2012)

    Article  Google Scholar 

  16. 16.

    Das, S.; Pan, I.; Das, S.: Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time. ISA Trans. 52, 550–566 (2013)

    Article  Google Scholar 

  17. 17.

    Sharma, R.; Rana, K.P.S.: Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Syst. Appl. 41, 11335–11346 (2014)

    Google Scholar 

  18. 18.

    Hajiloo, A.; Xie, W.-F.: Fuzzy fractional-order PID controller design using multi-objective optimization. In: Proceedings of IFSA World Congress and NAFIPS Annual meeting 2013 Joint, Edmonton, 24–28 June 2013

  19. 19.

    Lin, F.: Robust Control Design: An Optimal Control Approach. Wiley, Chichester (2007)

    Book  Google Scholar 

  20. 20.

    Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  21. 21.

    Tang, Y.; Cui, M.; Hua, C.; Li, L.; Yang, Y.: Optimum design of fractional order \(\text{ PI }^{\lambda }\text{ D }^{\mu }\) controller for AVR system using chaotic ant swarm. Expert Syst. Appl. 39, 6887–6896 (2012)

    Article  Google Scholar 

  22. 22.

    Pan, I.; Das, S.: Chaotic multi-objective optimization based design of fractional order \(\text{ PI }^{\lambda }\text{ D }^{\mu }\) controller in AVR system. Electr. Power Energy Syst. 43, 393–407 (2012)

    Article  Google Scholar 

  23. 23.

    Yang, X.S.; Deb, S.: Cuckoo Search via Lévy flights. In: Proceedings World Congress on Nature and Biologically Inspired Computing India, pp. 210–214 (2009)

  24. 24.

    Gandomi, A.H.; Yang, X.-S.; Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29, 17–35 (2013)

    Article  Google Scholar 

  25. 25.

    Rajabioun, R.: Cuckoo optimization algorithm. Appl. Soft Comput. 11, 5508–5518 (2011)

    Article  Google Scholar 

  26. 26.

    Yang, X.-S.; Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Modell. Numer. Optim. 1(4), 330–343 (2010)

    MATH  Google Scholar 

  27. 27.

    Tan, W.S.; Hassan, M.Y.; Majid, M.S.; Rahman, H.A.: Allocation and Sizing of DG using cuckoo search algorithm. In: 2012 IEEE International Conference on Power and Energy (PEcon) Kota Kinabalu Sabah, Malaysia, pp. 133–8 (2012)

  28. 28.

    Yildiz, A.R.: Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int. J. Adv. Manuf. Technol. 64(1–4), 55–61 (2013)

    Article  Google Scholar 

  29. 29.

    Bulatovic, R.R.; Dordevic, S.R.; Dordevic, V.S.: Cuckoo search algorithm: a metaheuristic approach to solving the problem of optimum synthesis of a six-bar double dwell linkage. Mech. Mach. Theory 61, 1–13 (2013)

    Article  Google Scholar 

  30. 30.

    Ayala, H.V.H.; Coelho, L.D.S.: Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator. Expert Syst. Appl. 39, 8968–8974 (2012)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richa Sharma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Gaur, P. & Mittal, A.P. Optimum Design of Fractional-Order Hybrid Fuzzy Logic Controller for a Robotic Manipulator. Arab J Sci Eng 42, 739–750 (2017). https://doi.org/10.1007/s13369-016-2306-0

Download citation

Keywords

  • Robotic manipulator
  • Fuzzy logic controller
  • Fractional-order operators
  • Cuckoo search algorithm
  • Trajectory tracking