Skip to main content
Log in

Forecasting Chaotic Time Series Via Anfis Supported by Vortex Optimization Algorithm: Applications on Electroencephalogram Time Series

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the context of time series analysis, forecasting time series is known as an important sub-study field within the associated scientific fields. At this point, especially forecasting chaotic systems has been a remarkable research approach. As being associated with the works on forecasting chaotic systems, some application areas are very interested in benefiting from advantages of forecasting time series. For instance, forecasting electroencephalogram (EEG) time series enables researchers to learn more about future status of the brain activity in terms of any physical or pathological case. In this sense, this work introduces an ANFIS–VOA hybrid system, which is based on ANFIS and a new optimization algorithm called as vortex optimization algorithm (VOA). Generally, the system provides a basic, strong enough, alternative forecasting solution way for EEG time series. The performed evaluation applications have shown that the ANFIS–VOA approach here provided effective enough solution way for forecasting EEG time series, as a result of learning–reasoning infrastructure achieved by the combination of two different artificial intelligence techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Douglas, A.L.; Williams, G.M.; Samuel, A.W.; Carol, A.W.: Basic Statistics for Business & Economics, 3rd edn. McGraw-Hill, New York (2009)

    Google Scholar 

  2. Esling, P.; Agon, C.: Time-series data mining. ACM Comput. Surv. (CSUR) 45(1), 12 (2012)

    Article  MATH  Google Scholar 

  3. NIST SEMATECH (2016) Introduction to time series analysis. Engineering Statistics Handbook. http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm

  4. Penn State Eberly Collage of Science (Online Courses) (2016) Overview of time series characteristics. STAT 510. Applied Time Series Analysis. https://onlinecourses.science.psu.edu/stat510/node/47

  5. Gromov, G.A.; Shulga, A.N.: Chaotic time series prediction with employment of ant colony optimization. Expert Syst. Appl. 39, 8474–8478 (2012)

    Article  Google Scholar 

  6. Yeh, W.-C.: New parameter-free simplified swarm optimization for artificial neural network training and its application in the prediction of time series. IEEE Trans. Neural Netw. Learn. Syst. 24, 661–665 (2013)

    Article  Google Scholar 

  7. Wu, X.; Li, C.; Wang, Y.; Zhu, Z.; Liu, W.: Nonlinear time series prediction using iterated extended Kalman filter trained single multiplicative neuron model. J. Inf. Comput. Sci. 10, 385–393 (2013)

    Google Scholar 

  8. Chen, D.; Han, W.: Prediction of multivariate chaotic time series via radial basis function neural network. Complexity 18(4), 55–66 (2013)

    Article  Google Scholar 

  9. Bontempi, G.; Taieb, S.B.; Le Borgne, Y.-A.: Machine learning strategies for time series forecasting. In: Aufaure, M.-A.; Zimanyi, E. (eds.) Business Intelligence. Lecture Notes in Business Information Processing—Vol. 138. Springer (2013)

  10. Weng, S.S.; Liu, Y.H.: Mining time series data for segmentation by using ant colony optimization. Eur. J. Oper. Res. 173, 921–937 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Toskari, M.D.: Estimating the net electricity energy generation and demand using the ant colony optimization approach. Energy Policy 37, 1181–1187 (2009)

    Article  Google Scholar 

  12. Hong, W.C.: Application of chaotic ant swarm optimization in electric load forecasting. Energy Policy 38, 5830–5839 (2010)

    Article  Google Scholar 

  13. Niu, D.; Wang, Y.; Wu, D.D.: Power load forecasting using support vector machine and ant colony optimization. Expert Syst. Appl. 37, 2531–2539 (2010)

    Article  Google Scholar 

  14. Unler, A.: Improvement of energy demand forecasts using swarm intelligence: the case of Turkey with projections to 2025. Energy Policy 36, 1937–1944 (2008)

    Article  Google Scholar 

  15. Zhao, L.; Yang, Y.: PSO-based single multiplicative neuron model for time series prediction. Expert Syst. Appl. 36, 2805–2812 (2009)

    Article  Google Scholar 

  16. Yao, J.; Liu, W.: Nonlinear time series prediction of atmospheric visibility in shanghai. In: Pedrycz, W.; Chen, S.-M. (eds.), Time Series Analysis, Modeling and Applications. Intelligent Systems Reference Library Vol.—47. Springer (2013)

  17. Ren, C.-X.; Wang, C.-B.; Yin, C.-C.; Chen, M.; Shan, X.: The prediction of short-term traffic flow based on the niche genetic algorithm and bp neural network. In: Proceedings of the 2012 International Conference on Information Technology and Software Engineering, pp. 775–781. Beijing (2013)

  18. Ding, C.; Wang, W.; Wang, X.; Baumann, M.: A neural network model for driver’s lane-changing trajectory prediction in urban traffic flow. Math. Probl. Eng. (Online) (2013). doi:10.1155/2013/967358

    Google Scholar 

  19. Yin, H.; Wong, S.C.; Xu, J.; Wong, C.K.: Urban traffic flow prediction using a fuzzy-neural approach. Transp. Res. C Emerg. Technol. 10, 85–98 (2002)

    Article  Google Scholar 

  20. Gan, M.; Peng, H.; Peng, X.; Chen, X.; Inoussa, G.: A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling. Inf. Sci. 180, 4370–4383 (2010)

    Article  MathSciNet  Google Scholar 

  21. Wong, W.K.; Xia, M.; Chu, W.C.: Adaptive neural network model for time-series forecasting. Eur. J. Oper. Res. 207, 807–816 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mirzaee, H.: Linear combination rule in genetic algorithm for optimization of finite impulse response neural network to predict natural chaotic time series. Chaos Solitons Fractals 41, 2681–2689 (2009)

    Article  Google Scholar 

  23. Hu, Y.X.; Zhang, H.T.: Prediction of the chaotic time series based on chaotic simulated annealing and support vector machine. In: Proceedings of the International Conference on Solid State Devices and Materials Science, pp. 506–512. Macao (2012)

  24. Liu, P.; Yao, J.A.: Application of least square support vector machine based on particle swarm optimization to chaotic time series prediction. In: Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems, pp. 458–462. Shanghai (2009)

  25. Quian, J.S.; Cheng, J.; Guo, Y.N.: A novel multiple support vector machines architecture for chaotic time series prediction. Adv. Nat. Comput. Lect. Notes Comput. Sci. 4221, 147–156 (2006)

    Article  Google Scholar 

  26. Farooq, T.; Guergachi, A.; Krishnan, S.: Chaotic time series prediction using knowledge based Green’s kernel and least-squares support vector machines. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 2669–2674, Montreal (2007)

  27. Shi, Z.W.; Han, M.: Support vector echo-state machine for chaotic time-series prediction. IEEE Trans. Neural Netw. 18, 359–372 (2007)

    Article  Google Scholar 

  28. Zhang, J.S.; Dang, J.L.; Li, H.C.: Local support vector machine prediction of spatiotemporal chaotic time series. Acta Phys. Sin. 56, 67–77 (2007)

    MATH  Google Scholar 

  29. Li, H.T.; Zhang, X.F.: Precipitation time series predicting of the chaotic characters using support vector machines. In: Proceedings of the International Conference on Information Management, Innovation Management and Industrial Engineering, pp. 407–410, Xian (2009)

  30. Yang, Z.H.O.; Wang, Y.S.; Li, D.D.; Wang, C.J.: Predict the time series of the parameter-varying chaotic system based on reduced recursive lease square support vector machine. In: Proceedings of the IEEE International Conference on Artificial Intelligence and Computational Intelligence, pp. 29–34, Shanghai (2009)

  31. Zhu, C.H.; Li, L.L.; Li, J.H.; Gao, J.S.: Short-term wind speed forecasting by using chaotic theory and SVM. Appl. Mech. Mater. 300–301, 842–847 (2013)

    Article  Google Scholar 

  32. Dunne, S.; Ghosh, B.: Weather adaptive traffic prediction using neurowavelet models. IEEE Trans. Intell. Transp. Syst. 14, 370–379 (2013)

    Article  Google Scholar 

  33. Yadav, R.N.; Kalra, P.K.; John, J.: Time series prediction with single multiplicative neuron model. Appl. Soft Comput. 7, 1157–1163 (2007)

    Article  Google Scholar 

  34. Catalao, J.P.S.; Pousinho, H.M.I.; Mendes, V.M.F.: Hybrid wavelet-PSO–ANFIS approach for short-term electricity prices forecasting. IEEE Trans. Power Syst. 26(1), 137–144 (2011)

    Article  Google Scholar 

  35. Wang, L.; Zou, F.; Hei, X.; Yang, D.; Chen, D.; Jiang, Q.; Cao, Z.: A hybridization of teaching-learning-based optimization and differential evolution for chaotic time series prediction. Neural Comput. Appl. 25(6), 1407–1422 (2014)

    Article  Google Scholar 

  36. Pulido, M.; Melin, P.; Castillo, O.: Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange. Inf. Sci. 280, 188–204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Marzban, F.; Ayanzadeh, R.; Marzban, P.: Discrete time dynamic neural networks for predicting chaotic time series. J. Artif. Intell. 7(1), 24 (2014)

    Article  Google Scholar 

  38. Huang, D.Z.; Gong, R.X.; Gong, S.: Prediction of wind power by chaos and BP artificial neural networks approach based on genetic algorithm. J. Electr. Eng. Technol. 10(1), 41–46 (2015)

    Article  Google Scholar 

  39. Jiang, P.; Qin, S.; Wu, J.; Sun, B.: Time series analysis and forecasting for wind speeds using support vector regression coupled with artificial intelligent algorithms. Math. Probl. Eng., 2015. Article ID 939305 (2015)

  40. Gentili, P.L.; Gotoda, H.; Dolnik, M.; Epstein, I.R.: Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor. Chaos: an interdisciplinary. J. Nonlinear Sci. 25(1), 013104 (2015)

    MATH  Google Scholar 

  41. Wang, L.; Zeng, Y.; Chen, T.: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst. Appl. 42(2), 855–863 (2015)

    Article  Google Scholar 

  42. Chandra, R.: Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time-series prediction. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3123–3136 (2015)

    Article  MathSciNet  Google Scholar 

  43. Seo, Y.; Kim, S.; Kisi, O.; Singh, V.P.: Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. J. Hydrol. 520, 224–243 (2015)

    Article  Google Scholar 

  44. Doucoure, B.; Agbossou, K.; Cardenas, A.: Time series prediction using artificial wavelet neural network and multi-resolution analysis: application to wind speed data. Renew. Energy 92, 202–211 (2016)

    Article  Google Scholar 

  45. Heydari, G.; Vali, M.; Gharaveisi, A.A.: Chaotic time series prediction via artificial neural square fuzzy inference system. Expert Syst. Appl. 55, 461–468 (2016)

    Article  Google Scholar 

  46. Zhou, T.; Gao, S.; Wang, J.; Chu, C.; Todo, Y.; Tang, Z.: Financial time series prediction using a dendritic neuron model. Knowl. Based Syst. 105, 214–224 (2016)

  47. Chai, S.H.; Lim, J.S.: Forecasting business cycle with chaotic time series based on neural network with weighted fuzzy membership functions. Chaos Solitons Fractals 90, 118–126 (2016)

  48. Jang, J.-S.R.: Self-learning fuzzy controllers based on temporal backpropagation. IEEE Trans. Neural Netw. 3, 714–723 (1992)

    Article  Google Scholar 

  49. Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)

    Article  Google Scholar 

  50. Guner, E.: Adaptive neuro fuzzy inference system applications in chemical processes. Dissertation, The Middle East Technical University (2003)

  51. Yun, Z.; Quan, Z.; Caixin, S.; Shaolan, L.; Yuming, L.; Yang, S.: RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment. IEEE Trans. Power Syst. 23(3), 853–858 (2008)

    Article  Google Scholar 

  52. Guler, I.; Ubeyli, A.N.: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J. Neurosci. Methods 148, 113–121 (2005)

    Article  Google Scholar 

  53. Pedraza, L.F.; Hernandez, C.A.; Corredor, O.F.: Forecasting of a chaotic time series with artificial intelligence techniques. J. Electr. Electr. Eng. (Online) 2, 174–178 (2010)

    Google Scholar 

  54. Escobar, A.M.; Perez, L.P.: Application of support vector machines and ANFIS to the short-term load forecasting. In: Transmission and Distribution Conference and Exposition: Latin America, 2008 IEEE/PES. IEEE (2008)

  55. Talebizadeh, M.; Moridnejad, A.: Uncertainty analysis for the forecast of lake level fluctuations using ensembles of ANN and ANFIS models. Expert Syst. Appl. 38(4), 4126–4135 (2011)

    Article  Google Scholar 

  56. Babu, N.R.; Babu, C.B.A.; Reddy, D.P.; Gowtham, M.: Comparison of ANFIS and ARIMA model for weather forecasting. Indian J. Sci. Technol. 8(S2), 70–73 (2015)

    Article  Google Scholar 

  57. Hsu, N.S.; Huang, C.L.; Wei, C.C.: Real-time forecast of reservoir inflow hydrographs incorporating terrain and monsoon effects during typhoon invasion by novel intelligent numerical-statistic impulse techniques. J. Hydrol. Eng. Technical Paper (2015)

  58. Cevik, H.H.; Cunkas, M.: Short-term load forecasting using fuzzy logic and ANFIS. Neural Comput. Appl. 26, 1–13 (2015)

    Article  Google Scholar 

  59. Mohaddes, S.A.; Fahimifard, S.M.: Application of adaptive neuro-fuzzy inference system (ANFIS) in forecasting agricultural products export revenues (case of Iran’s agriculture sector). J. Agric. Sci. Technol. 17(1), 1–10 (2015)

    Google Scholar 

  60. Moosavi, V.; Vafakhah, M.; Shirmohammadi, B.; Ranjbar, M.: Optimization of wavelet-ANFIS and wavelet-ANN hybrid models by Taguchi method for groundwater level forecasting. Arab. J. Sci. Eng. 39(3), 1785–1796 (2014)

    Article  Google Scholar 

  61. Ladlani, I.; Houichi, L.; Djemili, L.; Heddam, S.; Belouz, K.: Estimation of daily reference evapotranspiration (ET0) in the North of Algeria using adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) models: a comparative study. Arab. J. Sci. Eng. 39(8), 5959–5969 (2014)

    Article  Google Scholar 

  62. Karami, A.; Yousefi, T.; Mohebbi, S.; Aghanajafi, C.: Prediction of free convection from vertical and inclined rows of horizontal isothermal cylinders using ANFIS. Arab. J. Sci. Eng. 39(5), 4201–4209 (2014)

    Article  Google Scholar 

  63. Kose, U.; Arslan, A.: On the idea of a new artificial intelligence based optimization algorithm inspired from the nature of vortex. Broad Res. Artif. Intell. Neurosci. 5(1–4), 60–66 (2015)

    Google Scholar 

  64. Kose, U.; Guraksin, G.E.; Deperlioglu, O.: Diabetes determination via vortex optimization algorithm based support vector machines. In: Medical Technologies National Conference (TIPTEKNO), pp. 1–4. IEEE (2015)

  65. Andrzejak, R.G.; Lehnertz, K.; Rieke, C.; Mormann, F.; David, P.; Elger, C.E.: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64, 061907 (2001)

    Article  Google Scholar 

  66. Gautama, T.; Mandic, D.P.; Van Hulle, M.M.: Indications of nonlinear structures in brain electrical activity. Phys. Rev. E 67, 046204 (2003)

    Article  Google Scholar 

  67. Nigam, V.P.; Graupe, D.: A neural-network-based detection of epilepsy. Neurol. Res. 26, 55–60 (2004)

    Article  Google Scholar 

  68. Yeung, E.N.; Bogacz, R.; Holroyd, C.B.; Nieuwenhuis, S.; Cohen, J.D.: Generation of simulated EEG data. http://mkk-worlds.blogspot.com.tr/2009/11/generation-of-simulated-eeg-data.html (2009)

  69. Yeung, N.; Bogacz, R.; Holroyd, C.B.; Cohen, J.D.: Detection of synchronized oscillations in the electroencephalogram: an evaluation of methods. Psychophysiology 41(6), 822–832 (2004)

    Article  Google Scholar 

  70. Yeung, N.; Bogacz, R.; Holroyd, C.B.; Nieuwenhuis, S.; Cohen, J.D.: Theta phase resetting and the error -related negativity. Psychophysiology 44(1), 39–49 (2007)

    Article  Google Scholar 

  71. OTexts.org (2016) Evaluating forecast accuracy. https://www.otexts.org/fpp/2/5

  72. Eberhart, R.C.; Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science, Vol. 1, pp. 39–43 (1995)

  73. Kennedy, J.: The particle swarm: social adaptation of knowledge. In: 1997, IEEE International Conference on Evolutionary Computation, pp. 303–308. IEEE (1997)

  74. Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, New York, US (2011)

  75. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Beckington, UK (2010)

  76. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) Stochastic Algorithms: Foundations and Applications, pp. 169–178. Springer, Berlin, Germany (2009)

  77. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer, Berlin, Germany (2010)

  78. Yang, X.S.; Deb, S.: Cuckoo search via Lévy flights. In: 2009. NaBIC 2009. World Congress on Nature & Biologically Inspired Computing, pp. 210–214. IEEE (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utku Kose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kose, U., Arslan, A. Forecasting Chaotic Time Series Via Anfis Supported by Vortex Optimization Algorithm: Applications on Electroencephalogram Time Series. Arab J Sci Eng 42, 3103–3114 (2017). https://doi.org/10.1007/s13369-016-2279-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2279-z

Keywords

Navigation