Advertisement

Arabian Journal for Science and Engineering

, Volume 41, Issue 12, pp 4719–4741 | Cite as

A Review of Modeling Thermal Displacement Processes in Porous Media

  • Abiola David Obembe
  • Sidqi A. Abu-Khamsin
  • M. Enamul HossainEmail author
Review Article - Petroleum Engineering

Abstract

The subject of heat transfer in oil reservoirs has gained huge attention, due to its diverse range of applications in petroleum reservoir management and thermal recovery for enhanced oil recovery. Thermal recovery methods entail the addition of heat energy into the reservoir through injection wells with the aim of reducing the in situ oil viscosity which is usually around several thousand centipoise cP (in S.I unit kg/m s) at reservoir conditions to very low values at steam temperatures. In addition, several other mechanisms are associated with thermal recovery methods. These include thermal expansion of oil, steam distillation, and relative permeability changes, which contribute to the ultimate recovery of the reservoir. In this article, a detailed review of non-isothermal modeling in an oil reservoir is presented. In addition, a few remarks regarding the momentum transport and the energy balance equations and its various modifications through the years are provided. Finally, a memory-based formulation is proposed to capture the alteration of rock and fluid properties with time as well as accounting for other phenomena not described by classic diffusion equations.

Keywords

Heat transfer Reservoir management Enhanced oil recovery Memory-based 

List of symbols

\(a_{\mathrm{sf}}\)

Specific surface area (fluid to solid contact) (\(\hbox {m}^{2}\))

\(A\left( t \right) \)

Cumulative heated area (\(\hbox {m}^{2}\))

\(c_\mathrm{F} \)

Non-dimensional form-drag constant

\(c_\mathrm{p} \)

Specific heat (J/kg K)

C

Component

\(C_\mathrm{c} \)

Coke concentration (gmol/\(\hbox {m}^{3}\))

\(d_\mathrm{p} \)

Spherical particle diameter (m)

Da

Darcy number, \(\kappa /{L^{2}}\), dimensionless

\(E_\mathrm{H} \)

Heating efficiency, percentage

g

Acceleration due to gravity (m/s\(^{2}\))

h

Pay thickness (m)

\(h_{\mathrm{sf}} \)

Fluid to solid heat transfer coefficient (W/m\(^{2}\) K)

H

Aquifer height (m)

\(H_\mathrm{o} \)

Heat injection rate (J/s)

k

Thermal conductivity (W/m K)

K

Permeability (\(\hbox {m}^{2}\))

P

Pressure (Pa)

q

Heat flux (W/m\(^{2}\))

Q(t)

Heat stored in the pay zone (J)

Ra

Rayleigh number, dimensionless

\(Re_{dp}\)

Reynolds number based on particle diameter, \(\rho u\frac{d_p }{\mu }\) dimensionless

\(Re_\kappa \)

Reynolds number based on permeability, \(\rho \sqrt{\kappa }\frac{u}{\mu }\), dimensionless

r

Radial distance (m)

R

Thermal retardation factor

S

Saturation, fraction

t

Time (s)

T

Temperature (K)

\({u}\)

Velocity vector (m/s)

\(U_{hz} ( {x,y,z,t})\)

Heat flux in the vertical direction (J/s)

v

Heat velocity (m/s)

\(x_D \)

Dimensionless distance

z

Vertical distance (m)

Greek alphabets

\(\alpha \)

Thermal diffusivity (\(\hbox {m}^{2}/\hbox {s}\))

\(\alpha _\mathrm{L} \)

Longitudinal dispersivity (m)

\(\alpha _t \)

Transverse dispersivity (m)

\({\alpha }'\)

Overburden thermal diffusivity (\(\hbox {m}^{2}/\hbox {s}\))

\(\gamma \)

Fractional-order derivative

\(\eta \)

Pseudo-diffusivity (\(\hbox {m}^{3}\,\hbox {s}^{2-\gamma }/\hbox {kg}\))

\(\mu \)

Dynamic viscosity (kg/m s)

\(\kappa \)

Thermal dispersion tensor (W/m K)

\(\nu \)

Kinematic viscosity (\(\hbox {m}^{2}/\hbox {s}\))

\(\rho \)

Fluid density (\(\hbox {kg/m}^{3}\))

\(\sigma _r \)

Mean square variance

\(\tau \)

Dimensionless time

\(\phi \)

Porosity, fraction

\({\varGamma }\)

Standard gamma function

\({\varPhi }\)

Fluid potential (Pa)

Subscripts

c

Coke

e

Effective

f

Fluid

g

Gas

o

Oil

p

Pore

r

Reservoir

s

Rock solid matrix

sf

Solid-to-fluid interface

w

Water

0

Initial

1

Reservoir

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to acknowledge the support provided via King Abdulaziz City for Science and Technology (KACST), through the Science and Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM), for funding this work through project No. 11-OIL1661-04, as part of the National Science, Technology and Innovation Plan (NSTIP).

References

  1. 1.
    Muradov, K.M.; Davies, D.R.: Prediction of temperature distribution in intelligent wells. In: SPE Russian Oil and Gas Technical Conference and Exhibition. Society of Petroleum Engineers (2008)Google Scholar
  2. 2.
    Muskat, M.: The flow of homogeneous fluids through porous media. Soil. Sci. 46(2), 169 (1938)CrossRefGoogle Scholar
  3. 3.
    Nield, D.A.; Bejan, A.: Convection in Porous Media. Springer, New York (2006)zbMATHGoogle Scholar
  4. 4.
    Ertekin, T.; Abou-Kassem, J.H.; King, G.R.: Basic Applied Reservoir Simulation. Society of Petroleum Engineers Richardson, TX (2001)Google Scholar
  5. 5.
    Civan, F.: Porous Media Transport Phenomena. Wiley, Hoboken (2011)CrossRefGoogle Scholar
  6. 6.
    Yamamoto, K.; Iwamura, N.: Flow with convective acceleration through a porous medium. J. Eng. Math. 10, 41–54 (1976)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bhat, S.K.; Kovscek, A.R.: Permeability modification of diatomite during hot-fluid injection. J. Pet. Technol. 50, 98–100 (1998)Google Scholar
  8. 8.
    Civan, F.: Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport. Transp. Porous Media. 85, 233–258 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Civan, F.: Scale effect on porosity and permeability: kinetics, model, and correlation. AIChE J. 47, 271–287 (2001)CrossRefGoogle Scholar
  10. 10.
    Kolodzie S. Jr.: Analysis of pore throat size and use of the Waxman–Smits equation to determine OOIP in Spindle Field, Colorado: SPE-9382-MS. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1980)Google Scholar
  11. 11.
    Ochi, J.; Vernoux, J.-F.: Permeability decrease in sandstone reservoirs by fluid injection. J. Hydrol. 208, 237–248 (1998)CrossRefGoogle Scholar
  12. 12.
    Pape, H.; Clauser, C.; Iffland, J.: Permeability prediction based on fractal pore-space geometry. Geophysics 64, 1447–1460 (1999)CrossRefGoogle Scholar
  13. 13.
    Ross, C.; Ikeda, M.; Tang, G.-Q.; Kovscek, A.R.: Alteration of reservoir diatomites by hot water injection. In: SPE Western Regional and Pacific Section AAPG Joint Meeting. Society of Petroleum Engineers (2008)Google Scholar
  14. 14.
    Vaidya, R.N.; Fogler, H.S.: Formation damage due to colloidally induced fines migration. Colloids Surf. 50, 215–229 (1990)CrossRefGoogle Scholar
  15. 15.
    Hossain, M.E.; Mousavizadegan, S.H.; Islam, M.R.: The effects of thermal alterations on formation permeability and porosity. Pet. Sci. Technol. 26, 1282–1302 (2008)CrossRefGoogle Scholar
  16. 16.
    Hossain, M.E.; Mousavizadegan, S.H.; Islam, M.R.: Variation of rock and fluid temperature during thermal operation in porous media. Pet. Sci. Technol. 27, 597–611 (2009)CrossRefGoogle Scholar
  17. 17.
    İşcan, A.G.; Kök, M.V.; Bagcı, A.S.: Estimation of permeability and rock mechanical properties of limestone reservoir rocks under stress conditions by strain gauge. J. Pet. Sci. Eng. 53, 13–24 (2006)CrossRefGoogle Scholar
  18. 18.
    Nooruddin, H.A.; Hossain, M.E.: Modified Kozeny-Carmen correlation for enhanced hydraulic flow unit characterization. J. Pet. Sci. Eng. 80, 107–115 (2011)CrossRefGoogle Scholar
  19. 19.
    Caputo, M.: Diffusion of fluids in porous media with memory. Geothermics 28, 2–19 (1998)Google Scholar
  20. 20.
    Iaffaldano, G.; Caputo, M.; Martino, S.: Experimental and theoretical memory diffusion of water in sand. Hydrol. Earth Syst. Sci. Discuss. 2, 1329–1357 (2005)CrossRefGoogle Scholar
  21. 21.
    Martino, S.; Caputo, M.; Iaffaldano, G.: Experimental and theoretical memory diffusion of water in sand. Hydrol. Earth Syst. Sci. Discuss. 10, 93–100 (2006)CrossRefGoogle Scholar
  22. 22.
    Civan, F.: Temperature effect on advection–diffusion transport involving fines migration and deposition in geological porous media. Article No. 452. In: 2008 IAHR International Groundwater Symposium, Istanbul Turkey (2008)Google Scholar
  23. 23.
    Civan, F.: Predictability of porosity and permeability alterations by geochemical and geomechanical rock and fluid interactions. In: SPE International Symposium on Formation Damage Control. Society of Petroleum Engineers (2000)Google Scholar
  24. 24.
    Amaefule, J.O.; Kersey, D.G.; Marshall, D.M.; Powell, J.D.; Valencia, L.E.; Keelan, D.K.: Reservoir description: a practical synergistic engineering and geological approach based on analysis of core data. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1988)Google Scholar
  25. 25.
    Krumbein, W.C.; Monk, G.D.: Permeability as a function of the size parameters of unconsolidated sand. Trans. AIME. 151, 153–163 (1943)CrossRefGoogle Scholar
  26. 26.
    Pang, Z.; Liu, H.: The study on permeability reduction during steam injection in unconsolidated porous media. J. Pet. Sci. Eng. 106, 77–84 (2013)CrossRefGoogle Scholar
  27. 27.
    Heller, R.; Vermylen, J.; Zoback, M.: Experimental investigation of matrix permeability of gas shales. Am. Assoc. Pet. Geol. Bull. 98, 975–995 (2014)Google Scholar
  28. 28.
    Liu, S.; Harpalani, S.; Pillalamarry, M.: Laboratory measurement and modeling of coal permeability with continued methane production: part 2-Modeling results. Fuel 94, 117–124 (2012)CrossRefGoogle Scholar
  29. 29.
    Latham, J.-P.; Xiang, J.; Belayneh, M.; Nick, H.M.; Tsang, C.-F.; Blunt, M.J.: Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures. Int. J. Rock Mech. Min. Sci. 57, 100–112 (2013)Google Scholar
  30. 30.
    Manga, M.; Beresnev, I.; Brodsky, E.E.; Elkhoury, J.E.; Elsworth, D.; Ingebritsen, S.E.; Mays, D.C.; Wang, C.: Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms. Rev. Geophys. 50, 1–24 (2012)CrossRefGoogle Scholar
  31. 31.
    Bagci, S.; Kok, M.V.; Turksoy, U.: Determination of formation damage in limestone reservoirs and its effect on production. J. Pet. Sci. Eng. 28, 1–12 (2000)CrossRefGoogle Scholar
  32. 32.
    Schembre, J.M.; Tang, G.; Kovscek, A.R.: Effect of temperature on relative permeability for heavy-oil diatomite reservoirs. In: SPE Western Regional Meeting. Society of Petroleum Engineers (2005)Google Scholar
  33. 33.
    Pang, Z.-X.; Liu, H.-Q.; Liu, X.-L.: Characteristics of formation damage and variations of reservoir properties during steam injection in heavy oil reservoir. Pet. Sci. Technol. 28, 477–493 (2010)CrossRefGoogle Scholar
  34. 34.
    Sola, B.S.; Rashidi, F.: Experimental study of hot water injection into low-permeability carbonate rocks. Energy Fuels 22, 2353–2361 (2008)CrossRefGoogle Scholar
  35. 35.
    Schembre, J.M.; Kovscek, A.R.: Thermally induced fines mobilization: its relationship to wettability and formation damage. In: SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting. Society of Petroleum Engineers (2004)Google Scholar
  36. 36.
    Kaviany, M.: Principles of Heat Transfer in Porous Media. Springer, New York (1995)zbMATHCrossRefGoogle Scholar
  37. 37.
    Amhalhel, G.; Furmanski, P.: Problems of modeling flow and heat transfer in porous media. J. Power Technol. 85, 55 (1997)Google Scholar
  38. 38.
    Brinkman, H.C.: On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. 1, 81–86 (1949)CrossRefGoogle Scholar
  39. 39.
    Forchheimer, P.H.: Wasserbewegung Durch Boden. Zeitschrift des Vereines Dtsch. Ingenieure 45(50), 1781–1788 (1901)Google Scholar
  40. 40.
    Lauriat, G.; Prasad, V.: Non-Darcian effects on natural convection in a vertical porous enclosure. Int. J. Heat Mass Transf. 32, 2135–2148 (1989)CrossRefGoogle Scholar
  41. 41.
    Hsu, C.T.; Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat Mass Transf. 33, 1587–1597 (1990)Google Scholar
  42. 42.
    Bayram, A.: Non-isothermal flow models with mass diffusion for a stationary porous media by employing representative elementary volume. J. Inst. Sci. Technol. Dumlupinar Univ. Üniversitesi Fen Bilim. Enstitüsü Derg. 23, 49–58 (2010)Google Scholar
  43. 43.
    Batchelor, G.K.; Young, A.D.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  44. 44.
    Bear, J.: Dynamics of Fluids in Porous Media. Courier Corporation, Chelmsford (2013)zbMATHGoogle Scholar
  45. 45.
    Darcy, H.: Les fontaines publiques de la ville de Dijon. Exposition et application á suivre et des formules á employer dans les questions de duistribution d’eau (1856)Google Scholar
  46. 46.
    Choi, C.Y.; Kulacki, F.A.: Non-Darcian effects on mixed convection in a vertical porous annulus. In: Proceedings of 9th IHTC-Heat Transfer (1993)Google Scholar
  47. 47.
    Barak, A.Z.: Comments on ‘High velocity flow in porous media’ by Hassanizadeh and Gray. Transp. Porous Media 2, 533–535 (1987)CrossRefGoogle Scholar
  48. 48.
    Nield, D.A.: Effects of local thermal nonequilibrium in steady convective processes in a saturated porous medium: forced convection in a channel. J. Porous Media 1, 181–186 (1998)zbMATHGoogle Scholar
  49. 49.
    Nield, D.A.; Bejan, A.: Heat transfer through a porous medium. In: Convection in Porous Media, pp. 31–46. Springer, Berlin (2013)Google Scholar
  50. 50.
    Yang, J.; Wang, J.; Bu, S.; Zeng, M.; Wang, Q.; Nakayama, A.: Experimental analysis of forced convective heat transfer in novel structured packed beds of particles. Chem. Eng. Sci. 71, 126–137 (2012)CrossRefGoogle Scholar
  51. 51.
    Alazmi, B.; Vafai, K.: Analysis of variants within the porous media transport models. J. Heat Transf. 122, 303–326 (2000)CrossRefGoogle Scholar
  52. 52.
    Carrillo, L.P.: Convective heat transfer for viscous fluid flow through a metallic packed bed. Interciencia 30, 81 (2005)Google Scholar
  53. 53.
    Quintard, M.; Whitaker, S.: Theoretical Analysis of Transport in Porous Media. Marcel Dekker, New York (2000)zbMATHCrossRefGoogle Scholar
  54. 54.
    Wakao, N.; Kaguei, S.; Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: correlation of Nusselt numbers. Chem. Eng. Sci. 34, 325–336 (1979)CrossRefGoogle Scholar
  55. 55.
    Nield, D.A.: A note on local thermal non-equilibrium in porous media near boundaries and interfaces. Transp. porous media. 95, 581–584 (2012)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Yang, K.; Vafai, K.: Restrictions on the validity of the thermal conditions at the porous-fluid interface-an exact solution. J. Heat Transf. 133, 112601 (2011)CrossRefGoogle Scholar
  57. 57.
    Yang, K.; Vafai, K.: Analysis of temperature gradient bifurcation in porous media-an exact solution. Int. J. Heat Mass Transf. 53, 4316–4325 (2010)zbMATHCrossRefGoogle Scholar
  58. 58.
    Yang, K.; Vafai, K.: Analysis of heat flux bifurcation inside porous media incorporating inertial and dispersion effects-an exact solution. Int. J. Heat Mass Transf. 54, 5286–5297 (2011)zbMATHCrossRefGoogle Scholar
  59. 59.
    Hossain, M.E.; Abu-khamsin, S.A.: Development of dimensionless numbers for heat transfer in porous media using a memory concept. J. Porous Media 15, 18 (2012)Google Scholar
  60. 60.
    Levec, J.; Carbonell, R.G.: Longitudinal and lateral thermal dispersion in packed beds. Part I: theory. AICHE J. 31, 581–590 (1985)Google Scholar
  61. 61.
    Wong, K.F.; Dybbs, A.: An experimental study of thermal equilibrium in liquid saturated porous media. Int. J. Heat Mass Transf. 19, 234–235 (1976)CrossRefGoogle Scholar
  62. 62.
    Amiri, A.; Vafai, K.: Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int. J. Heat Mass Transf. 37, 939–954 (1994)CrossRefGoogle Scholar
  63. 63.
    Vadasz, P.: Explicit conditions for local thermal equilibrium in porous media heat conduction. Transp. porous media. 59, 341–355 (2005)CrossRefGoogle Scholar
  64. 64.
    Vadasz, P.: Absence of oscillations and resonance in porous media dual-phase-lagging Fourier heat conduction. J. Heat Transf. 127, 307–314 (2005)CrossRefGoogle Scholar
  65. 65.
    Vadasz, P.: On the paradox of heat conduction in porous media subject to lack of local thermal equilibrium. Int. J. Heat Mass Transf. 50, 4131–4140 (2007)zbMATHCrossRefGoogle Scholar
  66. 66.
    Spillette, A.G.: Heat transfer during hot fluid injection into an oil reservoir. J. Can. Pet. Technol. 4(04), 213–218 (1965)Google Scholar
  67. 67.
    Sauty, J.P.; Gringarten, A.C.; Landel, P.A.: The effect of thermal dispersion on injection of hot water in aquifers. In: Proceedings of the Second Invitational Well Testing Symposium, Berkeley, California, pp. 122–131 (1978)Google Scholar
  68. 68.
    Bödvarsson, G.S.; Tsang, C.F.: Injection and thermal breakthrough in fractured geothermal reservoirs. J. Geophys. Res. Solid Earth. 87, 1031–1048 (1982)CrossRefGoogle Scholar
  69. 69.
    Mozaffari, S.; Nikookar, M.; Ehsani, M.R.; Sahranavard, L.; Roayaie, E.; Mohammadi, A.H.: Numerical modeling of steam injection in heavy oil reservoirs. Fuel 112, 185–192 (2013)CrossRefGoogle Scholar
  70. 70.
    Falta, R.W.; Pruess, K.; Javandel, I.; Witherspoon, P.A.: Numerical modeling of steam injection for the removal of nonaqueous phase liquids from the subsurface: 1. Numerical formulation. Water Resour. Res. 28, 433–449 (1992)CrossRefGoogle Scholar
  71. 71.
    Falta, R.W.; Pruess, K.; Javandel, I.; Witherspoon, P.A.: Numerical modeling of steam injection for the removal of nonaqueous phase liquids from the subsurface: 2. Code validation and application. Water Resour. Res. 28, 451–465 (1992)CrossRefGoogle Scholar
  72. 72.
    Hossain, M.E.; Abu-Khamsin, S.A.; Al-Helali, A.-A.: A mathematical model for thermal flooding with equal rock and fluid temperatures. J. Porous Media. 18, 731–744 (2015)CrossRefGoogle Scholar
  73. 73.
    Kocabas, I.: Thermal transients during nonisothermal fluid injection into oil reservoirs. J. Pet. Sci. Eng. 42, 133–144 (2004)CrossRefGoogle Scholar
  74. 74.
    Sauty, J.-P.; Gringarten, A.C.; Fabris, H.; Thiéry, D.; Menjoz, A.; Landel, P.A.: Sensible energy storage in aquifers: 2. field experiments and comparison with theoretical results. Water Resour. Res. 18, 253–265 (1982)CrossRefGoogle Scholar
  75. 75.
    Graf, T.: Simulation of Geothermal Flow in Deep Sedimentary Basins in Alberta. Alberta Energy Resources Conservation Board, Alberta (2009)Google Scholar
  76. 76.
    Vafai, K.: Handbook of Porous Media. CRC Press, Boca Raton (2015)zbMATHGoogle Scholar
  77. 77.
    Hunt, A.; Ewing, R.; Ghanbarian, B.: Percolation Theory for Flow in Porous Media. Springer, Berlin (2014)zbMATHCrossRefGoogle Scholar
  78. 78.
    Mahdi, R.A.; Mohammed, H.A.; Munisamy, K.M.; Saeid, N.H.: Review of convection heat transfer and fluid flow in porous media with nanofluid. Renew. Sustain. Energy Rev. 41, 715–734 (2015)CrossRefGoogle Scholar
  79. 79.
    Dullien, F.A.L.: Porous Media: Fluid Transport and Pore Structure. Academic Press, London (2012)Google Scholar
  80. 80.
    Rubin, H.: Heat dispersion effect on thermal convection in a porous medium layer. J. Hydrol. 21, 173–185 (1974)CrossRefGoogle Scholar
  81. 81.
    Ripple, C.D.; James, R.V.; Rubin, J.: Packing-induced radial particle-size segregation: influence on hydrodynamic dispersion and water transfer measurements. Soil Sci. Soc. Am. J. 38, 219–222 (1974)CrossRefGoogle Scholar
  82. 82.
    Tyvand, P.A.: Heat dispersion effect on thermal convection in anisotropic porous media. J. Hydrol. 34, 335–342 (1977)CrossRefGoogle Scholar
  83. 83.
    Planck, M.: The Theory of Heat Radiation. Blakiston, Philadelphia (1906)zbMATHGoogle Scholar
  84. 84.
    Shah, D.O.: Surface Phenomena in Enhanced Oil Recovery. Springer, Berlin (1981)CrossRefGoogle Scholar
  85. 85.
    Lashgari, H.; Lotfollahi, M.; Delshad, M.; Sepehrnoori, K.; De Rouffignac, E.P.: Steam-surfactant-foam modeling in heavy oil reservoirs. In: SPE Heavy Oil Conference-Canada. Society of Petroleum Engineers (2014)Google Scholar
  86. 86.
    Zhao, D.W.; Wang, J.; Gates, I.D.: Thermal recovery strategies for thin heavy oil reservoirs. Fuel 117, 431–441 (2014)CrossRefGoogle Scholar
  87. 87.
    Zhao, D.W.; Gates, I.D.: On hot water flooding strategies for thin heavy oil reservoirs. Fuel 153, 559–568 (2015)CrossRefGoogle Scholar
  88. 88.
    Jensen, T.B.; Sharma, M.P.; Harris, H.G.: A critical evaluation of preliminary design techniques for steam drive projects. J. Pet. Sci. Eng. 5, 67–85 (1990)CrossRefGoogle Scholar
  89. 89.
    Lumley, D.E.; Bee, M.; Jenkins, S.; Wang, Z.: 4-D seismic monitoring of an active steamflood. doi: 10.1190/1.1887497 (1995)
  90. 90.
    Lauwerier, H.A.: The transport of heat in an oil layer caused by the injection of hot fluid. Appl. Sci. Res. Sect. A 5, 145–150 (1955)MathSciNetGoogle Scholar
  91. 91.
    Marx, J.W.; Langenheim, R.H.: Reservoir heating by hot fluid injection. Pet. Trans. AIME. 216, 312–315 (1959)Google Scholar
  92. 92.
    Ramey Jr., H.J.: Discussion of reservoir heating by hot fluid injection. Trans. AIME 216, 364–365 (1959)Google Scholar
  93. 93.
    Malofeev, G.E.; Scheinman, A.B.: The calculation of oil recovery from a stratum upon injecting hot water into it. Neft. Khoz. 41, 31–35 (1963)Google Scholar
  94. 94.
    Rubinshtein, L.I.: The total heat losses in injection of a hot liquid into a stratum. Neft. Gaz. 2, 41 (1959)Google Scholar
  95. 95.
    Mandl, G.; Volek, C.W.: Heat and mass transport in steam-drive processes. Soc. Pet. Eng. J. 9, 59–79 (1969)CrossRefGoogle Scholar
  96. 96.
    Avdonin, N.A.: Some formulas for calculating the temperature field of a stratum subject to thermal injection. Neft. Gaz. 3, 37–41 (1964)Google Scholar
  97. 97.
    Avdonin, N.A.: On some formulae for the calculation of the temperature field of a layer under heat injection. Izv. Vuzov. Neft. Gaz. 3, 37–41 (1964)Google Scholar
  98. 98.
    Prats, M.: The heat efficiency of thermal recovery processes. J. Pet. Technol. 21, 323–332 (1969)CrossRefGoogle Scholar
  99. 99.
    Davies, L.G.; Silberberg, I.H.: A method of predicting oil recovery in a five-spot steamflood. J. Pet. Technol. 20, 1050–1058 (1968)Google Scholar
  100. 100.
    Buckley, S.E.: Leverett, Mc: Mechanism of fluid displacement in sands. Trans. AIME 146, 107–116 (1942)CrossRefGoogle Scholar
  101. 101.
    Ali, S.M.F.: Steam injection theories—a unified approach. In: SPE California Regional Meeting. Society of Petroleum Engineers (1982)Google Scholar
  102. 102.
    Willman, B.T.; Valleroy, V. V.; Runberc, C.W.: Laboratory studies of oil recovery by steam injection. SPE 2515 (1960)Google Scholar
  103. 103.
    Myhill, N.A.; Stegemeier, G.L.: Steam-drive correlation and prediction. J. Pet. Technol. 30, 173–182 (1978)CrossRefGoogle Scholar
  104. 104.
    van Lookeren, J.: Calculation methods for linear and radial steam flow in oil reservoirs. Soc. Pet. Eng. J. 23, 427–439 (1983)CrossRefGoogle Scholar
  105. 105.
    Jones, J.: Steam drive model for hand-held programmable calculators. J. Pet. Technol. 33, 1583–1598 (1981)CrossRefGoogle Scholar
  106. 106.
    Jensen, T.B.; Sharma, M.P.; Harris, H.G.: An improved evaluation model for steam-drive projects. J. Pet. Sci. Eng. 5, 309–322 (1991)CrossRefGoogle Scholar
  107. 107.
    Bodvarsson, G.: Thermal problems in the siting of reinjection wells. Geothermics 1, 63–66 (1972)CrossRefGoogle Scholar
  108. 108.
    Woods, A.W.; Fitzgerald, S.D.: The vaporization of a liquid front moving through a hot porous rock. J. Fluid Mech. 251, 563–579 (1993)zbMATHCrossRefGoogle Scholar
  109. 109.
    Ziagos, J.P.; Blackwell, D.D.: A model for the transient temperature effects of horizontal fluid flow in geothermal systems. J. Volcanol. Geotherm. Res. 27, 371–397 (1986)CrossRefGoogle Scholar
  110. 110.
    Chen, H.-L.; Sylvester, N.D.: Appraisal of analytical steamflood models. In: SPE California Regional Meeting. Society of Petroleum Engineers (1990)Google Scholar
  111. 111.
    Miller, M.A.; Leung, W.K.: A simple gravity override model of steamdrive. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1985)Google Scholar
  112. 112.
    Chandra, S.; Mamora, D.D.: Improved steamflood analytical model. In: SPE International Thermal Operations and Heavy Oil Symposium. Society of Petroleum Engineers (2005)Google Scholar
  113. 113.
    Shook, G.M.: Predicting thermal breakthrough in heterogeneous media from tracer tests. Geothermics 30, 573–589 (2001)CrossRefGoogle Scholar
  114. 114.
    Stopa, J.; Wojnarowski, P.: Analytical model of cold water front movement in a geothermal reservoir. Geothermics 35, 59–69 (2006)CrossRefGoogle Scholar
  115. 115.
    Mongelli, F.; Pagliarulo, P.: Influence of water recharge on heat transfer in a semi-infinite aquifer. Geothermics 26, 365–378 (1997)CrossRefGoogle Scholar
  116. 116.
    Satman, A.: Solutions of heat, and fluid-flow problems in naturally fractured reservoirs: part 1-heat-flow problems. SPE Prod. Eng. 3, 463–466 (1988)CrossRefGoogle Scholar
  117. 117.
    Ghassemi, A.; Tarasovs, S.; Cheng, A.: Integral equation solution of heat extraction-induced thermal stress in enhanced geothermal reservoirs. Int. J. Numer. Anal. Methods Geomech. 29, 829–844 (2005)zbMATHCrossRefGoogle Scholar
  118. 118.
    Gringarten, A.C.; Witherspoon, P.A.; Ohnishi, Y.: Theory of heat extraction from fractured hot dry rock. J. Geophys. Res. 80, 1120–1124 (1975)CrossRefGoogle Scholar
  119. 119.
    Cheng, A.H.-D.; Ghassemi, A.; Detournay, E.: Integral equation solution of heat extraction from a fracture in hot dry rock. Int. J. Numer. Anal. Methods Geomech. 25, 1327–1338 (2001)zbMATHCrossRefGoogle Scholar
  120. 120.
    Kocabas, I.; Horne, R.N.: A new method of forecasting the thermal breakthrough time during reinjection in geothermal reservoirs. In: Proceedings, 15th Workshop on Geothermal Reservoir Engineering (1990)Google Scholar
  121. 121.
    Tor, B.: Nonisothermal effects in water-injection well tests. SPE Form. Eval. 4, 281–286 (1989)CrossRefGoogle Scholar
  122. 122.
    Jahanbani Ghahfarokhi, A.; Jelmert, T.A.; Kleppe, J.; Ashrafi, M.; Souraki, Y.; Torsaeter, O.: Investigation of the applicability of thermal well test analysis in steam injection wells for Athabasca heavy oil. In: SPE Europec/EAGE Annual Conference. Society of Petroleum Engineers (2012)Google Scholar
  123. 123.
    Benson, S.M.; Bodvarsson, G.S.: Nonisothermal effects during injection and falloff tests. SPE Form. Eval. 1, 53–63 (1986)CrossRefGoogle Scholar
  124. 124.
    Ambastha, A.K.; Ramey, H.J.: Thermal recovery well test design and interpretation. SPE Form. Eval. 4, 173–180 (1989)CrossRefGoogle Scholar
  125. 125.
    Aeschliman, D.P.; Noble, N.J.; Meldau, R.F.: Thermal efficiency of steam injection test well with insulated tubing. In: Annual Technical Meeting. Petroleum Society of Canada (1983)Google Scholar
  126. 126.
    Cendejas, F.A.; Rodriguez, J.R.: Heat transfer processes during low or high enthalpy fluid injection into naturally fractured reservoirs. Mich, MX, Gerencia de Proyectos Geotermoelectricos, Morelia (1994)Google Scholar
  127. 127.
    Ramirez, J.; Samaniego, F.V.; Rivera, J.R.; Rodriguez, F.: Tracer flow in naturally fractured reservoirs. SPE Pap. 25900, 12–14 (1993)Google Scholar
  128. 128.
    Kocabas, I.; Islam, M.R.: Concentration and temperature transients in heterogeneous porous media: part II: radial transport. J. Pet. Sci. Eng. 26, 221–233 (2000)CrossRefGoogle Scholar
  129. 129.
    Kocabas, I.; Islam, M.R.: Concentration and temperature transients in heterogeneous porous media: part I: linear transport. J. Pet. Sci. Eng. 26, 211–220 (2000)CrossRefGoogle Scholar
  130. 130.
    Dindoruk, D.M.; Dindoruk, B.: Analytical solution of nonisothermal Buckley-Leverett flow including tracers. SPE Reserv. Eval. Eng. 11, 555–564 (2008)CrossRefGoogle Scholar
  131. 131.
    Dindoruk, B.; Dindoruk, D.M.: Analytical and numerical solution of nonisothermal Buckley–Leverett flow including tracers. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2006)Google Scholar
  132. 132.
    Bai, M.; Roegiers, J.-C.: Modeling of heat flow and solute transport in fractured rock masses. In: 8th ISRM Congress. International Society for Rock Mechanics. International Society for Rock Mechanics (1995)Google Scholar
  133. 133.
    Lawal, K.A.; Vesovic, V.: Analytic investigation of convection during conduction heating of a heavy-oil reservoir. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2010)Google Scholar
  134. 134.
    Barends, F.: Complete solution for transient heat transport in porous media, following Lauwerier’s concept. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2010)Google Scholar
  135. 135.
    Miura, K.; Wang, J.: An analytical model to predict cumulative steam/oil ratio (CSOR) in thermal-recovery SAGD process. J. Can. Pet. Technol. 51, 268–275 (2012)CrossRefGoogle Scholar
  136. 136.
    Miura, K.; Wang, J.: An analytical model to predict cumulative steam oil ratio (CSOR) in thermal recovery SAGD process. In: Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers (2013)Google Scholar
  137. 137.
    Edmunds, N.; Peterson, J.: A unified model for prediction of CSOR in steam-based bitumen recovery. In: Canadian International Petroleum Conference. Petroleum Society of Canada (2007)Google Scholar
  138. 138.
    Wei, S.; Lin-Song, C.; Huang, S.; Huang, W.: Steam chamber development and production performance prediction of steam assisted gravity drainage. In: SPE Heavy Oil Conference-Canada. Society of Petroleum Engineers (2014)Google Scholar
  139. 139.
    Li, K.-Y.; Yang, S.-Y.; Yeh, H.-D.: An analytical solution for describing the transient temperature distribution in an aquifer thermal energy storage system. Hydrol. Process. 24, 3676–3688 (2010)CrossRefGoogle Scholar
  140. 140.
    Cheppelear, J.E.; Volek, C.W.: The injection of a hot liquid into a porous medium. Soc. Pet. Eng. J. 9, 100–114 (1969)CrossRefGoogle Scholar
  141. 141.
    Baker, P.E.: An experimental study of heat flow in steam flooding. Soc. Pet. Eng. J. 9, 89–99 (1969)CrossRefGoogle Scholar
  142. 142.
    Baker, P.E.: Effect of pressure and rate on steam zone development in steamflooding. Soc. Pet. Eng. J. 13, 274–284 (1973)CrossRefGoogle Scholar
  143. 143.
    Baker, P.E.: Heat wave propagation and losses in thermal oil recovery processes. In: 7th World Petroleum Congress. World Petroleum Congress. Chevron Research Co (1967)Google Scholar
  144. 144.
    Spillette, A.G.; Nielsen, R.L.: Two-dimensional method for predicting hot waterflood recovery behavior. J. Pet. Technol. 20, 627–638 (1967)CrossRefGoogle Scholar
  145. 145.
    Ferguson, M.A.: Further experimental studies of steam-propane injection to enhance recovery of Morichal oil. http://hdl.handle.net/1969.1/ETD-TAMU-2000-THESIS-F465 (2000)
  146. 146.
    Goite Marcano, J.G.: Experimental study of Morichal heavy oil recovery using combined steam and propane injection. http://hdl.handle.net/1969.1/ETD-TAMU-1999-THESIS-G66 (1999)
  147. 147.
    Goite, J.G.; Mamora, D.D.; Ferguson, M.A.: Experimental study of Morichal heavy oil recovery using combined steam and propane injection. In: SPE Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers (2001)Google Scholar
  148. 148.
    Tinss, J.C.: Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil. http://hdl.handle.net/1969.1/ETD-TAMU-2001-THESIS-T568 (2001)
  149. 149.
    Rivero, J.A.: Experimental studies of enhancement of injectivity and in-situ oil upgrading by steam propane injection for the Hamaca oil field. http://hdl.handle.net/1969.1/ETD-TAMU-2002-THESIS-R58 (2003)
  150. 150.
    Simangunsong, R.: Experimental and analytical modeling studies of steam injection with hydrocarbon additives to enhance recovery of San Ardo heavy oil. http://hdl.handle.net/1969.1/4308 (2006)
  151. 151.
    Naderi, K.; Babadagli, T.; Coskuner, G.: Bitumen recovery by the steam-over-solvent injection in fractured reservoirs (SOS-FR) method: an experimental study on Grosmont carbonates. Energy Fuels. 27, 6501–6517 (2013)CrossRefGoogle Scholar
  152. 152.
    Hashemi-Kiasari, H.; Hemmati-Sarapardeh, A.; Mighani, S.; Mohammadi, A.H.; Sedaee-Sola, B.: Effect of operational parameters on SAGD performance in a dip heterogeneous fractured reservoir. Fuel 122, 82–93 (2014)CrossRefGoogle Scholar
  153. 153.
    Mohsenzadeh, A.; Escrochi, M.; Afraz, M.V.; Al-wahaibi, Y.M.; Ayatollahi, S.: Experimental investigation of heavy oil recovery from fractured reservoirs by secondary steam-gas assisted gravity drainage. In: SPE Heavy Oil Conference Canada. Society of Petroleum Engineers (2012)Google Scholar
  154. 154.
    Shafiei, A.; Dusseault, M.B.; Zendehboudi, S.; Chatzis, I.: A new screening tool for evaluation of steamflooding performance in naturally fractured carbonate reservoirs. Fuel 108, 502–514 (2013)CrossRefGoogle Scholar
  155. 155.
    Farzaneh, S.A.; Sohrabi, M.: A review of the status of foam application in enhanced oil recovery. In: EAGE Annual Conference and Exhibition incorporating SPE Europec. Society of Petroleum Engineers (2013)Google Scholar
  156. 156.
    Ardali, M.; Barrufet, M.; Mamora, D.D.; Qiu, F.: A critical review of hybrid steam/solvent processes for the recovery of heavy oil and bitumen. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2012)Google Scholar
  157. 157.
    Naderi, K.; Babadagli, T.: Field scale application of the SOS-FR (Steam-Over-Solvent Injection in Fractured Reservoirs) method: optimal operating conditions. In: SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers (2012)Google Scholar
  158. 158.
    Moreno-Arciniegas, L.; Babadagli, T.: Optimal application conditions of solvent injection into oil sands to minimize the effect of asphaltene deposition: an experimental investigation. SPE Reserv. Eval. Eng. 17, 530–546 (2014)CrossRefGoogle Scholar
  159. 159.
    Zendehboudi, S.; Rajabzadeh, A.R.; Bahadori, A.; Chatzis, I.; Dusseault, M.B.; Elkamel, A.; Lohi, A.; Fowler, M.: Connectionist model to estimate performance of steam-assisted gravity drainage in fractured and unfractured petroleum reservoirs: enhanced oil recovery implications. Ind. Eng. Chem. Res. 53, 1645–1662 (2014)CrossRefGoogle Scholar
  160. 160.
    Saaid, Md: I.; Mahat, S.Q.A.; Lal, B.; Mutalib, M.I.A.; M. Sabil, K.: Experimental investigation on the effectiveness of 1-butyl-3-methylimidazolium perchlorate ionic liquid as a reducing agent for heavy oil upgrading. Ind. Eng. Chem. Res. 53, 8279–8284 (2014)Google Scholar
  161. 161.
    Pathak, V.; Babadagli, T.; Edmunds, N.: Experimental investigation of bitumen recovery from fractured carbonates using hot solvents. J. Can. Pet. Technol. 52, 289–295 (2013)CrossRefGoogle Scholar
  162. 162.
    Mohammadpoor, M.; Torabi, F.: An extensive review on the effective sequence of heavy oil recovery. In: SPE heavy oil conference Canada. Society of Petroleum Engineers (2012)Google Scholar
  163. 163.
    Liu, H.Q.; Wang, J.; Hou, P.C.; Wang, B.K.: Experimental investigation of enhanced oil recovery by thermal foam flooding. In: Advanced Materials Research, pp. 814–819. Trans Tech Publ (2011)Google Scholar
  164. 164.
    Naderi, K.; Babadagli, T.: Experimental analysis of heavy oil recovery and \(\text{CO}_{2}\) storage by alternate injection of steam and \(\text{ CO }_{2}\) in deep naturally fractured reservoir. In: SPE Heavy Oil Conference Canada. Society of Petroleum Engineers (2012)Google Scholar
  165. 165.
    Pathak, V.; Babadagli, T., Edmunds, N.R.: Hot solvent injection for heavy oil/bitumen recovery: an experimental investigation. In: Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers (2010)Google Scholar
  166. 166.
    Tang, G.-Q.; Inouye, A.; Lowry, D.; Lee, V.: Recovery mechanism of steam injection in heavy oil carbonate reservoir. In: SPE Western North American Region Meeting. Society of Petroleum Engineers (2011)Google Scholar
  167. 167.
    Jia, H.; Yuan, C.; Zhang, Y.; Peng, H.; Zhong, D.; Zhao, J.: Recent progress of high pressure air injection process (HPAI) in light oil reservoir: laboratory investigation and field application. In: SPE Heavy Oil Conference Canada. Society of Petroleum Engineers (2012)Google Scholar
  168. 168.
    Mukhametshina, A.; Hascakir, B.: Bitumen extraction by expanding solvent-steam assisted gravity drainage (ES-SAGD) with asphaltene solvents and non-solvents. In: SPE Heavy Oil Conference-Canada. Society of Petroleum Engineers (2014)Google Scholar
  169. 169.
    Souraki, Y.; Ashrafi, M.; Karimaie, H.; Torsaeter, O.: Experimental investigation and numerical simulation of steam flooding in heavy oil fractured reservoir. In: SPE Western North American Region Meeting. Society of Petroleum Engineers (2011)Google Scholar
  170. 170.
    Popov, Y.; Spasennykh, M.; Miklashevskiy, D.; Parshin, A.V.; Stenin, V.; Chertenkov, M.; Novikov, S.; Tarelko, N.: Thermal properties of formations from core analysis: evolution in measurement methods, equipment, and experimental data in relation to thermal EOR. In: Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers (2010)Google Scholar
  171. 171.
    Hirsch, T.; Feldhoff, J.F.; Hennecke, K.; Pitz-Paal, R.: Advancements in the field of direct steam generation in linear solar concentrators-a review. Heat Transf. Eng. 35, 258–271 (2014)CrossRefGoogle Scholar
  172. 172.
    Mohammed, M.; Babadagli, T.: Efficiency of solvent retrieval during steam-over-solvent injection in fractured reservoirs (SOS-FR) method: core scale experimentation. In: SPE Heavy Oil Conference-Canada. Society of Petroleum Engineers (2013)Google Scholar
  173. 173.
    Coskuner, G.; Naderi, K.; Babadagli, T.: An enhanced oil recovery technology as a follow up to cold heavy oil production with sand. J. Pet. Sci. Eng. 133, 475–482 (2015)CrossRefGoogle Scholar
  174. 174.
    Zhong, L.; Li, Y.; Sun, Y.; Lu, W.; Qin, F.; Hou, J.; Dong, Z.; Zhao, L.: Investigation on principles of enhanced offshore heavy oil recovery by coinjection of steam with flue gas. In: SPE Enhanced Oil Recovery Conference. Society of Petroleum Engineers (2013)Google Scholar
  175. 175.
    Ochs, S.O.; Class, H.; Färber, A.; Helmig, R.: Methods for predicting the spreading of steam below the water table during subsurface remediation. Water Resour. Res. 46, 1–16 (2010)CrossRefGoogle Scholar
  176. 176.
    Lamoureux-Var, V.; Kowalewski, I.; Kohler, E.: Forecasting \(\text{ H }_{2}\text{ S }\) generated from steamed oil sands insights into \(\text{ H }_{2}\text{ S }\) generation through experimental investigation. In: AAPG Hedberg Conference. Vail, Colorado (2010)Google Scholar
  177. 177.
    Ahmadi, M.A.; Zendehboudi, S.; Bahadori, A.; James, L.; Lohi, A.; Elkamel, A.; Chatzis, I.: Recovery rate of vapor extraction in heavy oil reservoirs? Experimental, statistical, and modeling studies. Ind. Eng. Chem. Res. 53, 16091–16106 (2014)CrossRefGoogle Scholar
  178. 178.
    Fayers, F.J.: Some theoretical results concerning the displacement of a viscous oil by a hot fluid in a porous medium. J. Fluid Mech. 13, 65–76 (1962)zbMATHCrossRefGoogle Scholar
  179. 179.
    Bodvarsson, G.S.; Benson, S.M.; Witherspoon, P.A.: Theory of the development of geothermal systems charged by vertical faults. J. Geophys. Res. Solid Earth. 87, 9317–9328 (1982)CrossRefGoogle Scholar
  180. 180.
    Wilson, L.A.; Root, P.J.: Cost comparison of reservoir heating using steam or air: SPE-1116-PA. J. Pet. Technol. 18, 233–239 (1966)CrossRefGoogle Scholar
  181. 181.
    Ferrer, J.: A three-phase, two-dimensional compositional thermal simulator for steam injection processes. J. Can. Pet. Technol. 16, 78–90 (1977)CrossRefGoogle Scholar
  182. 182.
    Abou-Kassem, J.H.: Investigation of grid orientation in a two-dimensional, compositional, three-phase steam model. http://hdl.handle.net/1880/22121 (1981)
  183. 183.
    Ishimoto, K.; Pope, G.A.; Sepchrnoori, K.: An equation-of-state steam simulator. In Situ (United States) 11, 1–37 (1987)Google Scholar
  184. 184.
    Jordon, J.K.; Rayne, J.R.; Marshall, S.W.: A calculation procedure for estimating the production history during hot water injection in linear reservoirs. In: 20th Technical Conference on Petroleum Production., The Pennsylvania State U., University Park, PA, 9–10 May 1957Google Scholar
  185. 185.
    Vinsome, P.K.W.: A numerical description of hot-water and steam drives by the finite-difference method. In: Fall Meeting of the Society of Petroleum Engineers of AIME. Society of Petroleum Engineers (1974)Google Scholar
  186. 186.
    Class, H.; Helmig, R.; Bastian, P.: Numerical simulation of non-isothermal multiphase multicomponent processes in porous media: 1. An efficient solution technique. Adv. Water Resour. 25, 533–550 (2002)CrossRefGoogle Scholar
  187. 187.
    Jensen, T.B.; Sharma, M.P.; Harris, H.G.; Whitman, D.L.: Numerical investigations of steam and hot-water flooding in fractured porous media. In: SPE/DOE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers (1992)Google Scholar
  188. 188.
    Dreher, K.D.; Kenyon, D.E.; Iwere, F.O.: Heat flow during steam injection into a fractured carbonate reservoir. Paper SPE 14902 presented at the 1986 SPE. In: DOE fifth Symposium on Enhanced Oil Recovery, Tulsa, Oklahoma, April pp. 20–23 (1986)Google Scholar
  189. 189.
    Sahuquet, B.C.; Ferrier, J.J.: Steam-drive pilot in a fractured carbonated reservoir: Lacq Superieur field. J. Pet. Technol. 34, 873–880 (1982)CrossRefGoogle Scholar
  190. 190.
    Reis, J.C.: Oil recovery mechanisms in fractured reservoirs during steam injection. In: SPE/DOE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers (1990)Google Scholar
  191. 191.
    Sumnu, M.D.; Brigham, W.E.; Aziz, K.; Castanier, L.M.: An experimental and numerical study on steam injection in fractured systems. In: SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers (1996)Google Scholar
  192. 192.
    Rayleigh, L.: LIX. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. Ser. 6 32, 529–546 (1916)Google Scholar
  193. 193.
    Karra, P.S.; Aziz, K.: A numerical study of transient natural convection in porous media. In: Proceedings of 17th Annual Conference of Canadian Society of Chemical Engineeres, Ontario (1967)Google Scholar
  194. 194.
    Sarathi, P.: Thermal numerical simulator for laboratory evaluation of steamflood oil recovery. National Institute for Petroleum and Energy Research, Bartlesville, OK (USA) (1991)CrossRefGoogle Scholar
  195. 195.
    Shutler, N.D.: Numerical, three-phase simulation of the linear steamflood process: SPE-2233-PA. Soc. Pet. Eng. J. 9, 232–246 (1969)CrossRefGoogle Scholar
  196. 196.
    Abdus, S.; Parrish, D.R.: A two-dimensional analysis of reservoir heating by steam injection. Soc. Pet. Eng. J. 11, 185–197 (1971)CrossRefGoogle Scholar
  197. 197.
    Gomaa, E.E.: Correlations for predicting oil recovery by steamflood. J. Pet. Technol. 32, 325–332 (1980)CrossRefGoogle Scholar
  198. 198.
    Abdalla, A.; Coats, K.H.: A three-phase, experimental and numerical simulation study of the steam flood process. In: Fall Meeting of the Society of Petroleum Engineers of AIME. Society of Petroleum Engineers (1971)Google Scholar
  199. 199.
    Coats, K.H.: Simulation of steamflooding with distillation and solution gas. Soc. Pet. Eng. J. 16, 235–247 (1976)CrossRefGoogle Scholar
  200. 200.
    Hossain, M.E.; Mousavizadegan, S.H.; Islam, M.R.: Rock and fluid temperature changes during thermal operation in EOR process. J. Nat. Sci. Sustain. Technol. 2, 347–378 (2007)Google Scholar
  201. 201.
    Cicek, O.: Numerical simulation of steam displacement of oil in naturally fractured reservoirs using fully implicit compositional formulation: a comparative analysis of the effects of capillary and gravitational forces in matrix/fracture exchange term. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2005)Google Scholar
  202. 202.
    Cicek, O.: A parametric study of the effects of reservoir and operational properties on the performance of steam displacement of heavy oil in naturally fractured reservoirs. In: SPE International Thermal Operations and Heavy Oil Symposium. Society of Petroleum Engineers (2005)Google Scholar
  203. 203.
    Wu, K.; Li, X.; Zhai, Y.: The model for predicting stream breakthrough timing during steam drive development of heavy oil reservoirs: SPE-150504-MS. In: SPE Heavy Oil Conference and Exhibition. Society of Petroleum Engineers (2011)Google Scholar
  204. 204.
    Hossain, M.E.; Mousavizadegan, S.H.; Islam, M.R.: A new porous media diffusivity equation with the inclusion of rock and fluid memories: SPE-114287-MS. Society of Petroleum Engineers (2008)Google Scholar
  205. 205.
    Hossain, M.E.: Comprehensive modelling of complex petroleum phenomena with an engineering approach. J. Porous Media. 15, 173–186 (2012)CrossRefGoogle Scholar
  206. 206.
    Hossain, M.E.; Abu-Khamsin, S.A.; Al-Helali, A.-A.: Use of the memory concept to investigate the temperature profile during a thermal EOR process: In: SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition. Society of Petroleum Engineers (2011)Google Scholar
  207. 207.
    Hossain, M.E.; Abu-khamsin, S.A.: Utilization of memory concept to develop heat transfer dimensionless numbers for porous media undergoing thermal flooding with equal rock and fluid temperatures. J. Porous Media 15, 18 (2011)Google Scholar
  208. 208.
    Yoshida, N.; Zhu, D.; Hill, A.D.: Temperature prediction model for a horizontal well with multiple fractures in a shale reservoir. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2013)Google Scholar
  209. 209.
    Yoshida, N.; Zhu, D.; Hill, A.D.: Temperature-prediction model for a horizontal well with multiple fractures in a shale reservoir. SPE Prod. Oper. 29, 261–273 (2014)CrossRefGoogle Scholar
  210. 210.
    Irawan, S.; Bathaee, M.: Numerical modeling of flow and temperature distribution in heterogeneous wellbore medium?: SPE-172568-MS. In: SPE Middle East Oil & Gas Show and Conference. Society of Petroleum Engineers (2015)Google Scholar
  211. 211.
    Peraser, V.; Patil, S.L.; Khataniar, S.; Dandekar, A.Y.; Sonwalkar, V.S.: Evaluation of electromagnetic heating for heavy oil recovery from Alaskan Reservoirs. In: SPE Western Regional Meeting. Society of Petroleum Engineers (2012)Google Scholar
  212. 212.
    Kovaleva, L.A.; Minnigalimov, R.Z.; Zinnatullin, R.R.: Destruction of water-in-oil emulsions in radio-frequency and microwave electromagnetic fields. Energy Fuels. 25, 3731–3738 (2011)CrossRefGoogle Scholar
  213. 213.
    Kasevich, R.S.: Method and apparatus for in-situ radiofrequency heating. https://www.google.com/patents/US7891421 (2011)
  214. 214.
    Hakala, J.A.; Stanchina, W.; Soong, Y.; Hedges, S.: Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes. Fuel Process. Technol. 92, 1–12 (2011)CrossRefGoogle Scholar
  215. 215.
    Rassenfoss, S.: Oil sands get wired-seeking more oil. Fewer emissions. J. Pet. Technol. 64, 34–45 (2012)Google Scholar
  216. 216.
    Banerjee, D.K.; Stalder, J.L.: Process for enhanced production of heavy oil using microwaves. https://www.google.com/patents/US7975763 (2011)
  217. 217.
    Bogdanov, I.; Torres, J.; Corre, B.: Numerical simulation of electromagnetic driven heavy oil recovery. In: SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers (2012)Google Scholar
  218. 218.
    Bogdanov, I.; Torres, J.; Kamp, A.M.; Corre, B.: Comparative analysis of electromagnetic methods for heavy oil recovery. In: SPE Heavy Oil Conference and Exhibition. Society of Petroleum Engineers (2011)Google Scholar
  219. 219.
    Hossan, M.R.; Dutta, P.: Effects of temperature dependent properties in electromagnetic heating. Int. J. Heat Mass Transf. 55, 3412–3422 (2012)CrossRefGoogle Scholar
  220. 220.
    Bientinesi, M.; Petarca, L.; Cerutti, A.; Bandinelli, M.; De Simoni, M.; Manotti, M.; Maddinelli, G.: A radiofrequency/microwave heating method for thermal heavy oil recovery based on a novel tight-shell conceptual design. J. Pet. Sci. Eng. 107, 18–30 (2013)Google Scholar
  221. 221.
    Farmayan, W.F.; Giles, S.P.; Brignac, J.P.; Munshi, A.W.; Abbasi, F.; Clomburg, L.A.; Anderson, K.G.; Tsai, K.; Siddoway, M.A.: Downhole burner systems and methods for heating subsurface formations. US Patent 7,950,453. 31 May 2011Google Scholar
  222. 222.
    Kovscek, A.R.: Emerging challenges and potential futures for thermally enhanced oil recovery. J. Pet. Sci. Eng. 98, 130–143 (2012)CrossRefGoogle Scholar
  223. 223.
    Aouizerate, G.; Durlofsky, L.J.; Samier, P.: New models for heater wells in subsurface simulations, with application to the in situ upgrading of oil shale. Comput. Geosci. 16, 519–533 (2012)CrossRefGoogle Scholar
  224. 224.
    Nguyen, S.V.; Vinegar, H.J.: Heating systems for heating subsurface formations. https://www.google.com/patents/US7931086 (2011)
  225. 225.
    Harris, C.K.; Karanikas, J.M.; Nguyen, S.V.: Parallel heater system for subsurface formations. https://www.google.com/patents/US8042610 (2011)
  226. 226.
    Hart, A.; Leeke, G.; Greaves, M.; Wood, J.: Down-hole heavy crude oil upgrading by CAPRI: Effect of hydrogen and methane gases upon upgrading and coke formation. Fuel 119, 226–235 (2014)CrossRefGoogle Scholar
  227. 227.
    Remey, E.E. de S.; Giuliani, V.; Harris, C.K.: Insulated conductor heaters with semiconductor layers. https://www.google.com/patents/US8939207 (2015)
  228. 228.
    Nguyen, S.V.; Bass, R.M.: Induction heaters used to heat subsurface formations. https://www.google.com/patents/US8162059 (2012)
  229. 229.
    Bottazzi, F.; Repetto, C.; Tita, E.; Maugeri, G.: Downhole electrical heating for heavy oil enhanced recovery: a successful application in offshore Congo. In: IPTC 2013: International Petroleum Technology Conference (2013)Google Scholar
  230. 230.
    Ozcan, O.: Fractional diffusion in naturally fractured unconventional reservoirs. http://hdl.handle.net/11124/10641 (2014)
  231. 231.
    Fomin, S.; Chugunov, V.; Hashida, T.: Mathematical modeling of anomalous diffusion in porous media. Fract. Differ. Calc. 1, 1–28 (2011)MathSciNetCrossRefGoogle Scholar
  232. 232.
    Chang, J.; Yortsos, Y.C.: Pressure transient analysis of fractal reservoirs. SPE Form. Eval. 5, 31–38 (1990)CrossRefGoogle Scholar
  233. 233.
    Dassas, Y.; Duby, P.: Diffusion toward fractal interfaces potentiostatic, galvanostatic, and linear sweep voltammetric techniques. J. Electrochem. Soc. 142, 4175–4180 (1995)CrossRefGoogle Scholar
  234. 234.
    O’Shaughnessy, B.; Procaccia, I.: Analytical solutions for diffusion on fractal objects. Phys. Rev. Lett. 54, 455 (1985)CrossRefGoogle Scholar
  235. 235.
    Hossain, M.E.; Islam, M.R.: A comprehensive material balance equation with the inclusion of memory during rock-fluid deformation. Adv. Sustain. Pet. Eng. Sci. 1, 141–162 (2009)Google Scholar
  236. 236.
    Caputo, M.: Diffusion with space memory modelled with distributed order space fractional differential equations. Ann. Geophys. 46, (2003)Google Scholar
  237. 237.
    Kilbas, A.A.; Marzan, S.A.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differ. Equ. 41, 84–89 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  238. 238.
    Daftardar-Gejji, V.; Jafari, H.: Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives. J. Math. Anal. Appl. 328, 1026–1033 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  239. 239.
    Heymans, N.; Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45, 765–771 (2006)CrossRefGoogle Scholar
  240. 240.
    Agarwal, R.; Belmekki, M.; Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Adv. Differ. Equ. 2009, 1–47 (2009)MathSciNetzbMATHGoogle Scholar
  241. 241.
    Yuste, S.B.; Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  242. 242.
    Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)Google Scholar
  243. 243.
    Murillo, J.Q.; Yuste, S.B.: On an explicit difference method for fractional diffusion and diffusion-wave equations. In: ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1031–1036. American Society of Mechanical Engineers (2009)Google Scholar
  244. 244.
    Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  245. 245.
    Hemond, H.F.; Fechner, E.J.: Chemical fate and transport in the environment. Elsevier, Amsterdam (2014)Google Scholar
  246. 246.
    Weinstein, H.G.; Wheeler, J.A.; Wood, E.G.: Numerical model for thermal processes. Soc. Pet. Eng. J. 17, 65–78 (1977)CrossRefGoogle Scholar
  247. 247.
    Coats, K.H.; George, W.D.; Chu, C.; Marcum, B.E.: Three-dimensional simulation of steamflooding. Soc. Pet. Eng. J. 14, 573–592 (1974)Google Scholar
  248. 248.
    Coats, K.H.: A highly implicit steamflood model. Soc. Pet. Eng. J. 18, 369–383 (1978)Google Scholar
  249. 249.
    Rubin, B.; Buchanan, W.L.: A general purpose thermal model. Soc. Pet. Eng. J. 25, 202–214 (1985)CrossRefGoogle Scholar
  250. 250.
    Rousset, M.: Reduced-order modeling for thermal simulation. Dissertation, Stanford University (2010)Google Scholar
  251. 251.
    App, J.F.: Field cases: Nonisothermal behavior due to Joule-Thomson and transient fluid expansion/compression effects. In: SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 4–7 Oct (2009)Google Scholar
  252. 252.
    Warren, J.E.; Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3, 245–255 (1963)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2016

Authors and Affiliations

  • Abiola David Obembe
    • 1
  • Sidqi A. Abu-Khamsin
    • 1
  • M. Enamul Hossain
    • 1
    Email author
  1. 1.Department of Petroleum Engineering, College of Petroleum Engineering and GeosciencesKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations