Arabian Journal for Science and Engineering

, Volume 41, Issue 11, pp 4669–4681

Investigation of Boron Addition on Densification and Cytotoxicity of Powder Injection Molded 316L Stainless Steel Dental Materials

  • Muhammad Aslam
  • Faiz Ahmad
  • Puteri Sri Melor Binti Megat Yusoff
  • Wen Lin Chai
  • Wei Cheong Ngeow
  • Muhammad Khairul Amir Nawi
Research Article - Mechanical Engineering
  • 85 Downloads

Abstract

Powder injection molding (PIM) is a hybrid of powder metallurgy and plastic injection molding. It is used to develop metallic molded parts with intricate shapes and with improved properties compared with those offered by their wrought counterparts. PIM dental implants should exhibit biocompatibility, high density, good dimensional control, homogeneous properties and low manufacturing cost. In order to achieve these properties, the effect of boron (additive) addition on sintered density and of process effects on the biocompatibility of sintered implants was studied. In activated sintering, additives are used in small quantities to modify the sintering behavior of stainless steel. A constant amount of nanosize elemental boron (0–1.5 wt%) was admixed with 316L stainless steel and was compounded with complex binder to develop feedstocks using a z-blade mixer. Optimal solvent debinding parameters followed by an optimal sintering cycle played a vital role in the development of biocompatible and densified 316L stainless steel dental implants. Although all boron-containing formulations were injection-molded successfully, only PWA-0.5B-1230 samples were able to retain their shapes after sintering. It was concluded that 0.5 wt% addition of elemental boron favored the formation of 316L stainless steel with a sintered density of up to 98.5 % through the formation of a complex iron boride compound (B6Fe23) on the grain boundaries during the sintering process. The formation of a passive layer on the outer surface of implants was controlled using optimal sintering parameters. In in vitro analysis, the cytotoxicity assessment of sintered dental implants materials was determined using the direct and indirect contact techniques.

Keywords

Powder injection molding Boron 316L SS Densification Sintering Cytotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xu F., Niu Y., Hu X.F., Li Y.C., Qu H.Y., Kang D.: Role of Second Phase Powders on Microstructural Evolution During Sintering. Experimental Mechanics 54, 57–62 (2014)CrossRefGoogle Scholar
  2. 2.
    Fornabaio, M.; Palmero, P.; Traverso, R.; Esnouf, C.; Reveron, H.; Chevalier, J.; et al.: Zirconia-based composites for biomedical applications: role of second phases on composition, microstructure and zirconia transformability. J. Eur. Ceram. Soc. 14, 4039–4049 (2015)Google Scholar
  3. 3.
    Aslam M., Ahmad F., BintiMegat Yusoff P.S.M., Muhamad N., Raza M.R., Irfan Shirazi M.: Effects of Admixed Titanium on Densification of 316L Stainless Steel Powder during Sintering. MATEC Web of Conferences 13, 04026 (2014)CrossRefGoogle Scholar
  4. 4.
    Raza M.R., Ahmad F., Muhamad N., Sulong A.B., Omar M.A., Akhtar M.N. et al.: Effects of solid loading and cooling rate on the mechanical properties and corrosion behavior of powder injection molded 316L stainless steel. Powder Technology 289, 135–142 (2016)CrossRefGoogle Scholar
  5. 5.
    Aslam M., Ahmad F., Yusoff P.S.M.B.M., Altaf K., Omar M.A., German R.M.: Powder injection molding of biocompatible stainless steel biodevices. Powder Technology 295, 84–95 (2016)CrossRefGoogle Scholar
  6. 6.
    German R., Munir Z.: The sintering of tantalum with transition metal additions. Powder Metallurgy 20, 145–150 (1977)CrossRefGoogle Scholar
  7. 7.
    Smith J.T.: Diffusion Mechanism for the Nickel-Activated Sintering of Molybdenum. Journal of Applied Physics 36, 595–598 (1965)CrossRefGoogle Scholar
  8. 8.
    German R.M., Munir Z.A.: Temperature sensitivity in the chemically activated sintering of hafnium. Journal of the Less Common Metals 46, 333–338 (1976)CrossRefGoogle Scholar
  9. 9.
    Schetky L.M., Johnson H.A.: Beryllium Technology: Conference sessions 1–4, pp. 779. Gordon and Breach, New York (1966)Google Scholar
  10. 10.
    Palmour H., Johnson D., Kuczynski G., Hooton N., Gibbs C.: Sintering and Related Phenomena, pp. 779. Gordon and Breach, New York (1967)Google Scholar
  11. 11.
    Chakravarty D., Chokshi A.H.: Influence of yttria and zirconia additions on spark plasma sintering of alumina composites. Journal of Materials Research 30, 1148–1156 (2015)CrossRefGoogle Scholar
  12. 12.
    Reshamwala A.S., Tendolkar G.S.: Powder-metallurgical review 1. Activated sintering, Part 1. Powder Met. Int. 1, 58 (1969)Google Scholar
  13. 13.
    Sorkhe Y., Aghajani H., Tabrizi A.T.: Mechanical alloying and sintering of nanostructured TiO 2 reinforced copper composite and its characterization. Materials & Design 58, 168–174 (2014)CrossRefGoogle Scholar
  14. 14.
    German R., d’Angelo K.: Enhanced sintering treatments for ferrous powders. International Metals Reviews 29, 249–272 (1984)CrossRefGoogle Scholar
  15. 15.
    Ye Y., Li X., Hu K., Qu S., Li Y.: Effects of Alloy Composition on Microstructure and Mechanical Properties of Iron-Based Materials Fabricated by Ball Milling and Spark Plasma Sintering. Metallurgical and Materials Transactions A 46, 476–487 (2015)CrossRefGoogle Scholar
  16. 16.
    Raja Annamalai A., Upadhyaya A., Agrawal D.: Effect of heating mode and electrochemical response on austenitic and ferritic stainless steels. Canadian Metallurgical Quarterly 54, 142–148 (2015)CrossRefGoogle Scholar
  17. 17.
    Prill, A.; Hayden, H.; Brophy, J.: The role of phase relationships in the activated sintering of tungsten. Trans. AIME 230 (1964)Google Scholar
  18. 18.
    Miramontes J.C., Sánchez J.B., Calderón F.A., Villafañe A.M., Nava J.C.: Effect of boron additions on sintering and densification of a ferritic stainless steel. Journal of materials engineering and performance 19, 880–884 (2010)CrossRefGoogle Scholar
  19. 19.
    Brook R., Gilbart E., Shaw N., Eisele U.: Solid solution additives and the sintering of ceramics. Powder metallurgy 28, 105–107 (1985)CrossRefGoogle Scholar
  20. 20.
    Gülsoy H., Gunay V., Baykara T.: Influence of TiC, TiN and TiC (N) additions on sintering and mechanical properties of injection moulded titanium based metal matrix composites. Powder Metallurgy 58, 30–35 (2015)CrossRefGoogle Scholar
  21. 21.
    Seah M.P., Hondros E.D.: Grain Boundary Segregation. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 335, 191–212 (1973)CrossRefGoogle Scholar
  22. 22.
    Mahathanabodee S., Palathai T., Raadnui S., Tongsri R., Sombatsompop N.: Effects of hexagonal boron nitride and sintering temperature on mechanical and tribological properties of SS316L/h-BN composites.. Materials & Design 46, 588–597 (2013)CrossRefGoogle Scholar
  23. 23.
    Szewczyk-nykiel, A.: The effect of the addition of boron on the densification, microstructure and properties of sintered 17-4 ph stainless steel wpływ dodatku boru na zagęszczenie, mikrostrukturę i właściwości spiekanej staliGoogle Scholar
  24. 24.
    Bakan H., Heaney D., German R.: Effect of nickel boride and boron additions on sintering characteristics of injection moulded 316L powder using water soluble binder system. Powder metallurgy 44, 235–242 (2001)CrossRefGoogle Scholar
  25. 25.
    ISO-10993-5: Biological Evaluation of Medical Devices e Part 5: Tests for Cytotoxicity: In Vitro Methods. ANSI/AAMI, Arlington (1999)Google Scholar
  26. 26.
    Youseffi M., Menzies I.A.: Injection moulding of WC–6Co powder using two new binder systems based on montanester waxes and water soluble gelling polymers. Powder metallurgy 40, 62–65 (1997)CrossRefGoogle Scholar
  27. 27.
    Aggarwal G., Park S.J., Smid I.: Development of niobium powder injection molding: Part I. Feedstock and injection molding. International Journal of Refractory Metals and Hard Materials 24, 253–262 (2006)CrossRefGoogle Scholar
  28. 28.
    Li Y., Li L., Khalil K.: Effect of powder loading on metal injection molding stainless steels. Journal of Materials Processing Technology 183, 432–439 (2007)CrossRefGoogle Scholar
  29. 29.
    Aslam, M.; Ahmad, F.; Yusoff, P.S.M.B.M.; Altaf, K.; Omar, M.A.; Abdul Khalil, H.P.S., et al.: Investigation of rheological behavior of low pressure injection molded stainless steel feedstocks. Adv. Mater. Sci. Eng. 2016, 9 (2016)Google Scholar
  30. 30.
    Mills P.: Non-Newtonian behaviour of flocculated suspensions. Journal de Physique Lettres 46, 301–309 (1985)CrossRefGoogle Scholar
  31. 31.
    German R.: Powder Injection Molding, MPIF. Princeton, New Jersey (1990)Google Scholar
  32. 32.
    Gharehbaghi A.: Precipitation Study in a High Temperature Austenitic Stainless Steel Using Low Voltage Energy Dispersive X-ray Spectroscopy. Royal Institute of Technology, Stockholm (2012)Google Scholar
  33. 33.
    Raza, M.R.; Ahmad, F.; Muhamad, N.; Sulong, A.B.; Omar, M.; Akhtar, M.N., et al.: Effects of residual carbon on microstructure and surface roughness of PIM 316L stainless steel. In: InCIEC 2014, pp. 927–935. Springer, Berlin (2015)Google Scholar
  34. 34.
    Krauss G.: Steels: Processing, Structure, and Performance. ASM International, Almere (2005)Google Scholar
  35. 35.
    Rawers J., Croydon F., Krabbe R., Duttlinger N.: Tensile characteristics of nitrogen enhanced PIM 316L stainless steel. Bulletin du Cercle d’Etudes des Metaux(France) 16, 5 (1995)Google Scholar
  36. 36.
    Khor, K.: Dilatometry studies on water atomised stainless steel 316L powders. In: Powder Metallurgy World Congress (PM’94), pp. 1065–1068 (1994)Google Scholar
  37. 37.
    German R., Rabin B.: Enhanced sintering through second phase additions. Powder metallurgy 28, 7–12 (1985)CrossRefGoogle Scholar
  38. 38.
    Gülsoy H.: Production of injection moulded 316L stainless steels reinforced with TiC (N) particles. Materials Science and Technology 24, 1484–1491 (2008)CrossRefGoogle Scholar
  39. 39.
    German, R.M.: Sintering Theory and Practice. Sintering Theory and Practice, vol. 1, pp. 568. Wiley, New York (1996); ISBN 0-471-05786-XGoogle Scholar
  40. 40.
    Divinski S., Hisker F., Kang Y.-S., Lee J.-S., Herzig C.: 59Fe Grain Boundary Diffusion in Nanostructured \({\gamma}\)-Fe–Ni: Part I: Radiotracer Experiments and Monte-Carlo Simulation in the Type-A and B Kinetic Regimes. Zeitschrift für Metallkunde 93, 256–264 (2002)CrossRefGoogle Scholar
  41. 41.
    Lin, S.J.; Feng, D.P.; Shi, Q.N.: Microstructure and mechanical properties of vacuum sintered austenitic stainless steel parts. Adv. Mater. Res. 160, 915–920 (2011)Google Scholar
  42. 42.
    Marucci M., Lawley A., Causton R., Saritas S.: Effect of Small Additions of Boron on the Mechanical Properties and Hardenability of Sintered P/M Steels. In: Arnhold, V., Chu, C.-L., Jandeska, W.F., Sanderow, H.I. (eds) Advances in Powder Metallurgy and Particulate Materials,compiled, pp. 53–63. MPIF, Princeton (2002)Google Scholar
  43. 43.
    Tang X.: Sigma phase characterization in AISI 316 stainless steel. Microscopy and Microanalysis 11, 78–79 (2005)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2016

Authors and Affiliations

  • Muhammad Aslam
    • 1
  • Faiz Ahmad
    • 1
  • Puteri Sri Melor Binti Megat Yusoff
    • 1
  • Wen Lin Chai
    • 2
  • Wei Cheong Ngeow
    • 2
  • Muhammad Khairul Amir Nawi
    • 2
  1. 1.Department of Mechanical EngineeringUniversiti Teknologi PETRONASSeri IskandarMalaysia
  2. 2.Department of Restorative Dentistry, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations