Skip to main content
Log in

Synthesis of Bentonite–Carbon Nanotube Nanocomposite and Its Adsorption of Rhodamine Dye From Water

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript


In this work, cheap and effective nanocomposite material has been synthesized by mixing natural bentonite (B) with 5 % multiwall carbon nanotubes followed by heat treatment to 650\({^{\circ}}\)C in the inert atmosphere. It makes a potentially attractive adsorbent of rhodamine dye (RhB) from wastewater. The nanocomposite adsorbent (BCA) was characterized by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The effects of contact time, adsorbent dosage, initial dye concentration and pH on dye removal were investigated. The isotherm of dye adsorption was studied. The adsorption isotherm of dye onto B and BCA showed good fitting to Langmuir and Freundlich isotherm models. The maximum adsorption capacity \({({q}_{\rm m})}\) of B and BCA samples is 8.6 and 142.8 mg/g, respectively. Both bentonite and modified bentonite are capable of removing the RhB dye from water. In general, the nanocomposite sample BCA significantly enhances the removal of RhB dye from aqueous solution. In addition, the BCA could be used as an eco-friendly adsorbent to remove the dye from colored wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others



Raw bentonite


Bentonite carbon nanotubes (nanocomposite) adsorbent


Rhodamine dye


Multiwall carbon nanotubes


Full width at half maximum

D :

The average crystallite size (nm)

\({\lambda}\) :

The wavelength of the X-ray radiation (nm)

K :

The Scherrer constant (\({k = 0.9}\))

\({\beta}\) :

The half maximum line breadth

\({\theta}\) :

The Bragg angle

m :

Mass of adsorbent (g/L)

q :

q (mg/g) is adsorption capacity or amount of adsorbate removed from aqueous solution at equilibrium

\({{C}_{{\rm e}}}\) :

Concentration of the adsorbate at equilibrium in the solution (mg/L)

\({{q}_{{\rm m}}}\) :

Maximum adsorption capacity (mg/g)

\({{K}_{{\rm L}}}\) :

Langmuir constant (L/g)

\({{K}_{{\rm F}}}\) :

Freundlich constant indicating the adsorption capacity of the adsorbent (mg/g)

n :

Experimental constant indicative of the adsorption intensity of the adsorbent

\({{C}_{0}}\) :

The initial concentration of the dye (mg/L)


Equilibrium parameter describing the type of Langmuir isotherm


  1. Weber E.J., Adams R.L.: Chemical- and sediment-mediated reduction of the azo dye disperse blue 79. Environ. Sci. Technol. 29(5), 1163–1170 (1995)

    Article  Google Scholar 

  2. Camargo, B.V.; Marales, M.A.: Azo dyes: characterization and toxicity—a review. Text. Light Ind. Sci. Technol. 2(2) (2013)

  3. Crini G.: Non-conventional low cost adsorbents for dyes removal: a review. Bioresour. Technol. 97(9), 1061–1085 (2006)

    Article  Google Scholar 

  4. Rafatullah M., Sulaiman O., Hashim R., Ahmad A.: Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mater. 177(1), 70–80 (2010)

    Article  Google Scholar 

  5. Alsalhy Q.F., Albyati T.M., Zablouk M.A.: A study of the effect of operating conditions on reverse osmosis membrane performance with and without air sparging technique. Chem. Eng. Commun. 200(1), 1–19 (2013)

    Article  Google Scholar 

  6. Chandra T.C., Mirna M.M., Sudaryanto Y., Ismadji S.: Adsorption of basic dye onto activated carbon prepared from durian shell: studies of adsorption equilibrium and kinetics. Chem. Eng. J. 127(1-3), 121–129 (2007)

    Article  Google Scholar 

  7. Albayati T.M., Doyle A.M.: Shape-selective adsorption of substituted aniline pollutants from wastewater. Adsorpt. Sci. Technol. 31(5), 459–468 (2013)

    Article  Google Scholar 

  8. Casal B., Merino J., Serratosa J.M., Ruiz-Hitzky E.: Sepiolite-based materials for the photo- and thermal-stabilization of pesticides. Appl. Clay Sci. 18(5–6), 245–254 (2001)

    Article  Google Scholar 

  9. Iqbal M.J., Asiq N.M.: Adsorption of dyes from aqueous solutions on activated charcoal. J. Hazard. Mater. 139(1), 57–66 (2007)

    Article  Google Scholar 

  10. Nasuha, N.; Zurainan, H.Z.; Maarof, H.I.; Zubir, N.A.; Amri, N.: Effect of cationic and anionic dye adsorption from aqueous solution by using chemically modified papaya seed. In: International Conference on Environment Science and Engineering, IPCBEE, vol. 8. Singapore (2011)

  11. Neumann M.G., Gessner F., Schmitt C.C., Sartori R.: Influence of the layer charge and clay particle size on the interactions between the cationic dye methylene blue and clays in an aqueous suspension. J. Colloid Interface Sci. 255, 254–259 (2002)

    Article  Google Scholar 

  12. Ayari F., Srasra E., Trabelsi-Ayadi M.: Characterization of bentonitic clays and their use as adsorbent. Desalination 185, 391–397 (2005)

    Article  Google Scholar 

  13. El-Shishtawy R.M., Melegy A.A.: Geochemistry and utilization of montmorillonitic soil for cationic dye removal. Adsorpt. Sci. Technol. 19, 609–620 (2001)

    Article  Google Scholar 

  14. Mandal A., Ojha K.: Removal of colour from distillery wastewater by different processes. Indian Eng. 45(4), 246–267 (2003)

    Google Scholar 

  15. Jin X., Jiang M., Shan X., Pei Z., Chen Z.: Adsorption of methylene blue and orange II onto unmodified and surfactant-modified zeolite. J. Colloid Interface Sci. 328(2), 243–247 (2008)

    Article  Google Scholar 

  16. Mohammed, M.I.; Abdul Razak, A.A.; Hussein Al-Timimi, D.A.: Modified multiwalled carbon nanotubes for treatment of some organic dyes in wastewater. Adv. Mater. Sci. Eng. (2014). Article ID 201052. doi:10.1155/2014/201052

  17. Selvam P.P., Preethi S., Basakaralingam P., Thinakaran N., Sivasamy A., Sivanesan S.: Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. J. Hazard. Mater. 155, 39–44 (2008)

    Article  Google Scholar 

  18. Madejova J.: FTIR techniques in clay mineral studies. Vib. Spectrosc. 31, 1–10 (2013)

    Article  Google Scholar 

  19. Maksym L., Nikolai L., Eugene V.: Hybrid multiwalled carbon nanotube-Laponite sorbent for removal of methylene blue from aqueous solutions. J. Colloid Interface Sci. 431, 39–44 (2008)

    Google Scholar 

  20. Su F., Lu C.: Adsorption kinetics, thermodynamics and desorption of natural dissolved organic matter by multiwalled carbon nanotubes. J. Environ. Sci. Health A 42(11), 543–1552 (2007)

    Article  Google Scholar 

  21. Shirmardi M., Mahvi A.H., Mesdaghinia A., Nasseri S., Nabizadeh R.: Adsorption of acid red18 dye from aqueous solution using single-wall carbon nanotubes: kinetic and equilibrium. Desalin. Water Treat. 51(34-36), 6507–6516 (2013)

    Article  Google Scholar 

  22. Ting S., Shujuan Z., Tanju K.: Adsorption of synthetic organic chemicals by carbon nanotubes: effects of background solution chemistry. Water Res. 44, 2076–2074 (2010)

    Google Scholar 

  23. Peng X., Li Y., Luan Z., Di Z., Wang H., Tian B., Jia Z.: Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem. Phys. Lett. 376(1-2), 154–158 (2003)

    Article  Google Scholar 

  24. Lu C., Su F., Hu S.: Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Appl. Surf. Sci. 254(21), 7035–7041 (2008)

    Article  Google Scholar 

  25. Baskaralingam P., Pulikesi M., Ramamurthi V., Sivanesan S.: Equilibrium studies for the adsorption of acid dye onto modified hectorite. J. Hazard. Mater. B 136, 989–992 (2006)

    Article  Google Scholar 

  26. Sabri A.A., Albayati T.M., AlAzawı R.A.: Synthesis of ordered mesoporous SBA-15 and its adsorption of methylene blue. Korean J. Chem. Eng. 32(9), 1838–1841 (2015)

    Article  Google Scholar 

  27. Sarikaya M., Sarikaya Y.: Thermal behaviour of a bentonite. J. Therm. Anal. Calorim. 90, 167–172 (2007)

    Article  Google Scholar 

  28. Jie, L.; Jiafen, P.: Removal of carbon tetrachloride from contaminated groundwater environment by adsorption method. In: Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), June 18–20, pp. 1–4. IEEE Xplore Press, Chengdu. doi:10.1109/ICBBE.2010.5517280 (2010)

  29. Tang R., Lia Q., Cui Y., Zhang H.Y., Zhai J.: Poly (aniline-co-aminophenol)/mesoporous silica SBA-15 composite. Polym. Adv. Technol. 22(12), 2231–2236 (2011)

    Article  Google Scholar 

  30. Ruthven D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1985)

    Google Scholar 

  31. Dhankhar R., Hooda A.: Fungal biosorption-an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ. Technol. 32, 467–491 (2011)

    Article  Google Scholar 

  32. Mishra A.K., Arockiadoss T., Ramaprabhu S.: Study of removal of azo dye by functionalized multi walled carbon nanotubes. J. Chem. Eng. 163(3), 1026–1034 (2010). doi:10.1016/j.cej.2010.07.014

    Article  Google Scholar 

  33. Zhu H.Y., Fu Y.Q., Jiang R., Jiang J.H., Xiao L., Zeng G.M., Zhao S.L., Wang Y.: Adsorption removal of congo red onto magnetic cellulose/Fe3O4/activated carbon composite: Equilibrium, kinetic and thermodynamic studies. J. Chem. Eng. 173, 494–502 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mohammed Ibrahim Mohammed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, M.I., Baytak, S. Synthesis of Bentonite–Carbon Nanotube Nanocomposite and Its Adsorption of Rhodamine Dye From Water. Arab J Sci Eng 41, 4775–4785 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: