Skip to main content
Log in

Wave Characteristics of Nanotubes Conveying Fluid Based on the Non-classical Timoshenko Beam Model Incorporating Surface Energies

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The aim of this paper was to investigate the wave propagation of nanotubes conveying fluid by considering the surface stress effect. To this end, the nanotube is modeled as a Timoshenko nanobeam. According to the Gurtin–Murdoch continuum elasticity, the surface stress effect is incorporated into the governing equations of motion obtained from the Hamilton principle. The governing differential equations are solved by generalized differential quadrature method. Then, the effects of the thickness, material and surface stress modulus, residual surface stress, surface density and flow velocity on spectrum curves of nanotubes predicted by both classical and non-classical theories are studied. The first three fundamental modes including flexural, axial, and shear waves of nanotubes are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({L}\) :

Length (\({{m})}\)

\({h}\) :

Thickness (\({{m})}\)

\({d_{\rm i} }\) :

Inner diameter (\({{m})}\)

\({d_{\rm o} }\) :

Outer diameter (\({{m})}\)

\({E}\) :

Young’s modulus (\({{Pa})}\)

\({\nu }\) :

Poisson’s ratio

\({\lambda ,\mu }\) :

Lame’s constants (\({{Pa})}\)

\({\rho }\) :

Mass density (\({{kg}/{m}^{3})}\)

\({A}\) :

Cross-sectional area (\({{m}^{2})}\)

\({I}\) :

Second moment of inertia (\({{m}^{4})}\)

\({\rho _{\rm f} }\) :

Mass density (\({{kg}/{m}^{3})}\)

\({V}\) :

Velocity (\({{m}/{s})}\)

\({A_{\rm f} }\) :

Cross-sectional area (\({{m}^{2})}\)

\({I_{\rm f} }\) :

Second moment of inertia (\({{m}^{4})}\)

\({\left( {U,W,{\varPsi}} \right)}\) :

Amplitude of displacement field

\({k}\) :

Wave number

\({\omega }\) :

Frequency

\({{\bf M}}\) :

Inertia matrix

\({{\bf C}}\) :

Damping matrix

\({{\bf K}}\) :

Stiffness matrix

\({{\bf I}}\) :

Identity matrix

\({{\bf S}}\) :

State-space matrix

\({E_{\rm s} }\) :

Elasticity modulus (\({{Pa})}\)

\({\nu _{\rm s} }\) :

Poisson’s ratio

\({\rho _{\rm s} }\) :

Mass density (\({{kg}/{m}^{2})}\)

\({\tau _{\rm s} }\) :

Residual tension (\({{N}/{m})}\)

\({\lambda _{\rm s} ,\mu _{\rm s} }\) :

Lame’s constants (\({{N}/{m})}\)

\({\left( {x,y,z} \right)}\) :

Cartesian coordinate system

\({\left( {u,w,\psi } \right)}\) :

Displacement field \({\left( {m,m,-} \right)}\)

\({\varepsilon _{xx} }\) :

Strain

\({\sigma _{ij} ,\sigma _{ij}^s }\) :

Stresses (\({{Pa},{N}/{m})}\)

\({N_{xx} ,\bar{N}_{xx} }\) :

Resultant normal forces (\({{N})}\)

\({M_{xx} ,\bar{M}_{xx} }\) :

Resultant bending moments (\({{Nm})}\)

\({Q_x ,\bar{Q}_x}\) :

Resultant shear forces (\({{N})}\)

\({\Pi_{\rm s} }\) :

Strain energy (\({{J})}\)

\({\Pi_T }\) :

Kinetic energy (\({{J})}\)

\({\Pi_{T_{f}} }\) :

Fluid kinetic energy (\({{J})}\)

\({A_{11} ,A_{33} , A_{55} ; D_{11} ,E_{11} }\) :

Stiffness components (in Eq. 15) (\({{N}}\); \({{Nm}^{2})}\)

\({I_0 ; I_2 ,G}\) :

Inertia components (in Eq. 15) (kg/m; kg m)

\({u,w,x, \eta ,\tau , I_0^\ast ,I_2^\ast ,g, a_{11}}\) :

Non-dimensional parameters

\({a_{13} , a_{33} , d_{11} ,e_{11} , K_b ,v}\) :

(in Eq. 17)

References

  1. Iijima S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Zhang W.D., Wen Y., Min Liu S., Tjiu W.C., Qin Xu G., Ming Gan L.: Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates. Carbon 40, 1981–1989 (2002)

    Article  Google Scholar 

  3. Liu L., Zhang Y.: Multi-wall carbon nanotube as a new infrared detected material. Sens. Actuators A Phys. 116, 394–397 (2004)

    Article  Google Scholar 

  4. Yan X.B., Chen X.J., Tay B.K., Khor K.A.: Transparent and flexible glucose biosensor via layer-by-layer assembly of multi-wall carbon nanotubes and glucose oxidase. Electrochem. Commun. 9, 1269–1275 (2007)

    Article  Google Scholar 

  5. Zhao C., Song Y., Ren J., Qu X.: A DNA nanomachine induced by single-walled carbon nanotubes on gold surface. Biomaterials 30, 1739–1745 (2009)

    Article  Google Scholar 

  6. Qin C., Shen J., Hu Y., Ye M.: Facile attachment of magnetic nanoparticles to carbon nanotubes via robust linkages and its fabrication of magnetic nanocomposites. Compos. Sci. Technol. 69, 427–431 (2009)

    Article  Google Scholar 

  7. Hummer G., Rasaiah J.C., Noworyta J.P.: Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001)

    Article  Google Scholar 

  8. Gao Y., Bando Y.: Nanotechnology: carbon nanothermometer containing gallium. Nature 415, 599–599 (2002)

    Article  Google Scholar 

  9. Adali S.: Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler–Bernoulli beam model. Nano Lett. 9, 1737–1741 (2009)

    Article  Google Scholar 

  10. Foldvari M., Bagonluri M.: Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed. Nanotechnol. Biol. Med. 4, 183–200 (2008)

    Article  Google Scholar 

  11. Rashidi V., Mirdamadi H.R., Shirani E.: A novel model for vibrations of nanotubes conveying nanoflow. Comput. Mater. Sci. 51, 347–352 (2012)

    Article  Google Scholar 

  12. Stölken J.S., Evans A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  13. McFarland A.W., Colton J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060 (2005)

    Article  Google Scholar 

  14. Kong S., Zhou S., Nie Z., Wang K.: The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci. 46, 427–437 (2008)

    Article  MATH  Google Scholar 

  15. Streitz F.H., Cammarata R.C., Sieradzki K.: Surface-stress effects on elastic properties. I. Thin metal films. Phys. Rev. B 49, 10699–10706 (1994)

    Article  Google Scholar 

  16. Dingreville R., Qu J., Mohammed C.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53, 1827–1854 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. He J., Lilley C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)

    Article  Google Scholar 

  18. Wang G.F., Feng X.Q.: Effects of surface stresses on contact problems at nanoscale. J. Appl. Phys. 101, 013510 (2007)

    Article  Google Scholar 

  19. Mindlin R.D., Tiersten H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eringen A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  22. Ansari R., Faghih Shojaei M., Gholami R., Mohammadi V., Darabi M.: Thermal postbuckling behavior of size-dependent functionally graded Timoshenko microbeams. Int. J. Non Linear Mech. 50, 127–135 (2013)

    Article  Google Scholar 

  23. Ansari R., Faghih Shojaei M., Mohammadi V., Gholami R., Darabi M.A.: Buckling and postbuckling behavior of functionally graded Timoshenko microbeams based on the strain gradient theory. J. Mech. Mater. Struct. 7, 931–949 (2013)

    Article  Google Scholar 

  24. Ansari R., Gholami R., Darabi M.A.: A nonlinear Timoshenko beam formulation based on strain gradient theory. J. Mech. Mater. Struct. 7, 195–211 (2012)

    Article  Google Scholar 

  25. Ansari R., Gholami R., Shojaei M.F., Mohammadi V., Darabi M.: Surface stress effect on the pull-in instability of hydrostatically and electrostatically actuated rectangular nanoplates with various edge supports. J. Eng. Mater. Technol. 134, 041013 (2012)

    Article  Google Scholar 

  26. Ghayesh M.H.: Nonlinear size-dependent behaviour of single-walled carbon nanotubes. Appl. Phys. A 117, 1393–1399 (2014)

    Article  Google Scholar 

  27. Gurtin M., Ian Murdoch A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gurtin M.E., Ian Murdoch A.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  29. Shenoy V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)

    Article  Google Scholar 

  30. Weissmüller J., Cahn J.W.: Mean stresses in microstructures due to interface stresses: a generalization of a capillary equation for solids. Acta Mater. 45, 1899–1906 (1997)

    Article  Google Scholar 

  31. Duan H.L., Wang J., Huang Z.P., Karihaloo B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sharma P., Ganti S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71, 663–671 (2004)

    Article  MATH  Google Scholar 

  33. Wang L.: Vibration analysis of fluid-conveying nanotubes with consideration of surface effects. Phys. E Low Dimens. Syst. Nanostruct. 43, 437–439 (2010)

    Article  Google Scholar 

  34. Lu P., He L.H., Lee H.P., Lu C.: Thin plate theory including surface effects. Int. J. Solids Struct. 43, 4631–4647 (2006)

    Article  MATH  Google Scholar 

  35. Yoon J., Ru C.Q., Mioduchowski A.: Flow-induced flutter instability of cantilever carbon nanotubes. Int. J. Solids Struct. 43, 3337–3349 (2006)

    Article  MATH  Google Scholar 

  36. Zhu R., Pan E., Chung P.W., Cai X., Liew K.M., Buldum A.: Atomistic calculation of elastic moduli in strained silicon. Semicond. Sci. Technol. 21, 906 (2006)

    Article  Google Scholar 

  37. Miller R.E., Shenoy V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139 (2000)

    Article  Google Scholar 

  38. Narendar S., Gopalakrishnan S.: Terahertz wave characteristics of a single-walled carbon nanotube containing a fluid flow using the nonlocal Timoshenko beam model. Phys. E Low Dimens. Syst. Nanostruct. 42, 1706–1712 (2010)

    Article  Google Scholar 

  39. Ansari R., Hosseini K., Darvizeh A., Daneshian B.: A sixth-order compact finite difference method for non-classical vibration analysis of nanobeams including surface stress effects. Appl. Math. Comput. 219, 4977–4991 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gholami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Gholami, R., Norouzzadeh, A. et al. Wave Characteristics of Nanotubes Conveying Fluid Based on the Non-classical Timoshenko Beam Model Incorporating Surface Energies. Arab J Sci Eng 41, 4359–4369 (2016). https://doi.org/10.1007/s13369-016-2132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2132-4

Keywords

Navigation