Arabian Journal for Science and Engineering

, Volume 42, Issue 1, pp 53–63 | Cite as

Production, Partial Purification and Characterization of Enzyme Cocktail from Trichoderma citrinoviride AUKAR04 Through Solid-State Fermentation

  • Karthik Periyasamy
  • Laishram Santhalembi
  • Gérard Mortha
  • Marc Aurousseau
  • Agnès Guillet
  • David Dallerac
  • Subramanian SivanesanEmail author
Research Article - Biological Sciences


A strain of Trichoderma citrinoviride AUKAR04 was identified on the basis of morphological and 5.8S ribosomal RNA sequencing [GenBank: KF698728]. It produces cocktail of enzymes such as xylanase (55,000 IU gds−1), CMCase (375 IU gds−1) and β-1,3-glucanase (695 IU gds−1) after 72 h under solid-state fermentation. These enzymes were partially purified by a three-phase partitioning method, which recovered the maximum activities of xylanase (99.8 %) with 5.7-fold, CMCase (96.5 %) with 5.5-fold and β-1,3-glucanase (98.4 %) with 5.6-fold purification. The maximum activity of xylanase was observed at pH 5.0, CMCase at pH 5.0–6.0 and β-1,3-glucanase at pH 6.0. Optimum temperature of xylanase and β-1,3-glucanase was found to be at 50 °C, while for CMCase was at 60 °C. The activities of these enzymes were enhanced by Mg2+ and Mn2+ ions. Eucalyptus pulp fiber was incubated for 14 h with the enzyme cocktail. Xylanase hydrolyzed the pulp to yield arabinose (475 mg L−1) and xylose (1795 mg L−1), CMCase and β-1,3-glucanase released glucose (18763 mg L−1). The length of fiber was reduced from 0.881 to 0.056 mm. This is indicative of the potential application on bioconversion of lignocellulosic biomass into fermentable sugars by the enzyme cocktail produced from T. citrinoviride AUKAR04 for sustainable production of bioethanol.


Xylanase CMCase β-1,3-Glucanase Solid-state fermentation Three-phase partitioning Trichoderma sp. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hahn-Hägerdal B., Galbe M., Gorwa-Grauslund M.F., Lidén G., Zacchi G.: Bio-ethanol-the fuel of tomorrow from the residues of today. Trends Biotechnol. 24, 549–556 (2006)CrossRefGoogle Scholar
  2. 2.
    Binod P., Sindhu R., Singhania R.R., Vikram S., Devi L., Nagalakshmi S., Kurien N., Sukumaran R.K., Pandey A.: Bioethanol production from rice straw: an overview. Bioresour. Technol. 101, 4767–4774 (2010)CrossRefGoogle Scholar
  3. 3.
    Kumar R., Singh S., Singh O.V.: Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35, 377–391 (2008)CrossRefGoogle Scholar
  4. 4.
    Rubin E.M.: Genomics of cellulosic biofuels. Nature 454, 841–845 (2008)CrossRefGoogle Scholar
  5. 5.
    Kang S.: Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol. 91, 153–156 (2004)CrossRefGoogle Scholar
  6. 6.
    Guerriero G., Hausman J., Strauss J., Ertan H., Sohail K.: Destructuring plant biomass?: focus on fungal and extremophilic cell wall hydrolases. Plant Sci. 234, 180–193 (2015)CrossRefGoogle Scholar
  7. 7.
    Menon V., Rao M.: Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38, 522–550 (2012)CrossRefGoogle Scholar
  8. 8.
    Geddes C.C., Nieves I.U., Ingram L.O.: Advances in ethanol production. Curr. Opin. Biotechnol. 22, 312–319 (2011)CrossRefGoogle Scholar
  9. 9.
    Biswas R., Uellendahl H., Ahring B.: Conversion of C6 and C5 sugars in undetoxified wet exploded bagasse hydrolysates using Scheffersomyces (Pichia) stipitis CBS6054. AMB Express 3, 42 (2013)CrossRefGoogle Scholar
  10. 10.
    Yin L., Lin H., Xiao Z.: Purification and characterization of a cellulase from Bacillus subtilis YJ1. J. Mar. Sci Technol. 18, 466–471 (2010)Google Scholar
  11. 11.
    Giese E.C., Dekker R.F.H., Barbosa A.M., De Lourdes M., Silva R.: Production of β-(1,3)-glucanases by Trichoderma harzianum Rifai: optimization and application to produce gluco-oligosaccharides from paramylon and pustulan. Ferment. Technol. 1, 1–5 (2012)CrossRefGoogle Scholar
  12. 12.
    Sun H., Ge X., Hao Z., Peng M.: Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. Afr. J. Biotechnol. 9, 163–166 (2010)CrossRefGoogle Scholar
  13. 13.
    Pandey A., Soccol C.R., Mitchell D.: New developments in solid state fermentation: I-bioprocesses and products. Process Biochem. 35, 1153–1169 (2000)CrossRefGoogle Scholar
  14. 14.
    Sandrim V.C., Rizzatti A.C.S., Terenzi H.F., Jorge J.A., Milagres A.M.F., Polizeli M.L.T.M.: Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochem. 40, 1823–1828 (2005)CrossRefGoogle Scholar
  15. 15.
    Dogan N., Tari C.: Characterization of three-phase partitioned exo-polygalacturonase from Aspergillus sojae with unique properties. Biochem. Eng. J. 39, 43–50 (2008)CrossRefGoogle Scholar
  16. 16.
    Choonia H.S., Lele S.S.: Three phase partitioning of β-galactosidase produced by an indigenous Lactobacillus acidophilus isolate. Sep. Purif. Technol. 110, 44–50 (2013)CrossRefGoogle Scholar
  17. 17.
    Chaiwut P., Pintathong P., Rawdkuen S.: Extraction and three-phase partitioning behavior of proteases from papaya peels. Process Biochem. 45, 1172–1175 (2010)CrossRefGoogle Scholar
  18. 18.
    Rajeeva S., Lele S.S.: Three-phase partitioning for concentration and purification of laccase produced by submerged cultures of Ganoderma sp. WR-1. Biochem. Eng. J. 54, 103–110 (2011)CrossRefGoogle Scholar
  19. 19.
    Özer B., Akardere E., Çelem E.B., Önal S.: Three-phase partitioning as a rapid and efficient method for purification of invertase from tomato. Biochem. Eng. J. 50, 110–115 (2010)CrossRefGoogle Scholar
  20. 20.
    Roy I., Sharma A., Gupta M.N.: Three-phase partitioning for simultaneous renaturation and partial purification of Aspergillus niger xylanase. Biochim. Biophys. Acta 1698, 107–110 (2004)CrossRefGoogle Scholar
  21. 21.
    Patagundi B.I., Shivasharan C.T., Kaliwal B.B.: Isolation and characterization of cellulase producing bacteria from soil. Int. J. Curr. Microbiol. Appl. Sci. 3, 601–614 (2014)Google Scholar
  22. 22.
    Deshpande S.K., Bhotmange M.G., Chakrabarti T., Shastri P.N.: Production of cellulase and xylanase by Trichoderma reesei (QM 9414 mutant), Aspergillus niger and mixed culture by solid state fermentation (SSF) of water hyacinth (Eichhornia crassipes). Indian J. Chem. Technol. 15, 449–456 (2008)Google Scholar
  23. 23.
    Azin M., Moravej R., Zareh D.: Production of xylanase by Trichoderma longibrachiatum on a mixture of wheat bran and wheat straw: optimization of culture condition by Taguchi method. Enzyme Microb. Technol. 40, 801–805 (2007)CrossRefGoogle Scholar
  24. 24.
    Mekala N.K., Singhania R.R., Sukumaran R.K., Pandey A.: Cellulase production under solid-state fermentation by Trichoderma reesei RUT C30: statistical optimization of process parameters. Appl. Biochem. Biotechnol. 151, 122–131 (2008)CrossRefGoogle Scholar
  25. 25.
    Sadhu S., Saha P., Sen S.K., Mayilraj S., Maiti T.K.: Production, purification and characterization of a novel thermotolerant endoglucanase (CMCase) from Bacillus strain isolated from cow dung. Springerplus 2, 10 (2013)CrossRefGoogle Scholar
  26. 26.
    Jia H., Li Y., Liu Y., Yan Q., Yang S., Jiang Z.: Engineering a thermostable β-1,3-1,4-glucanase from Paecilomyces thermophila to improve catalytic efficiency at acidic pH. J. Biotechnol. 159, 50–55 (2012)CrossRefGoogle Scholar
  27. 27.
    Miller G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)CrossRefGoogle Scholar
  28. 28.
    Bayraktar H., S.: Concentration and purification of α-galactosidase from watermelon (Citrullus vulgaris) by three phase partitioning. Sep. Purif. Technol. 118, 835–841 (2013)CrossRefGoogle Scholar
  29. 29.
    Iqbal H.M.N.: Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv. Biosci. Biotechnol. 02, 149–156 (2011)CrossRefGoogle Scholar
  30. 30.
    Bajaj B.K., Abbass M.: Studies on an alkali-thermostable xylanase from Aspergillus fumigatus MA28. 3 Biotech 1, 161–171 (2011)CrossRefGoogle Scholar
  31. 31.
    Ferreira, S.M.P.; Duarte, A.P.; Queiroz, J.A.; Domingues, F.C.: Influence of buffer systems on Trichoderma reesei Rut C-30 morphology and cellulase production. Electron. J. Biotechnol. 12 (2009)Google Scholar
  32. 32.
    Ketnawa S., Benjakul S., Martínez-alvarez O., Rawdkuen S.: Three-phase partitioning and proteins hydrolysis patterns of alkaline proteases derived from fish viscera. Sep. Purif. Technol. 132, 174–181 (2014)CrossRefGoogle Scholar
  33. 33.
    Tseng M.-J., Yap M.-N., Ratanakhanokchai K., Kyu K.L., Chen S.-T.: Purification and characterization of two cellulase free xylanases from an alkaliphilic Bacillus firmus. Enzyme Microb. Technol. 30, 590–595 (2002)CrossRefGoogle Scholar
  34. 34.
    Saha B.C.: Production, purification and properties of xylanase from a newly isolated Fusarium proliferatum. Process Biochem. 37, 1279–1284 (2002)CrossRefGoogle Scholar
  35. 35.
    DaSilva Aires R., Steindorff A.S., Ramada M.H.S., de Siqueira S.J.L., Ulhoa C.J.: Biochemical characterization of a 27 kDa 1,3-β-d-glucanase from Trichoderma asperellum induced by cell wall of Rhizoctonia solani. Carbohydr. Polym. 87, 1219–1223 (2012)CrossRefGoogle Scholar
  36. 36.
    Chen L.-L., Zhang M., Zhang D.-H., Chen X.-L., Sun C.-Y., Zhou B.-C., Zhang Y.-Z.: Purification and enzymatic characterization of two beta-endoxylanases from Trichoderma sp. K9301 and their actions in xylooligosaccharide production. Bioresour. Technol. 100, 5230–5236 (2009)CrossRefGoogle Scholar
  37. 37.
    Fontaine T., Hartland R.P., Diaquin M., Simenel C., Latgé J.P.: Differential patterns of activity displayed by two exo-beta-1,3-glucanases associated with the Aspergillus fumigatus cell wall. J. Bacteriol. 179, 3154–3163 (1997)CrossRefGoogle Scholar
  38. 38.
    Hauli I., Sarkar B., Mukherjee T., Mukhopadhyay S.K.: Purification and characterization of a thermoalkaline, cellulase free thermostable xylanase from a newly isolated Anoxybacillus sp. Ip-C from hot spring of Ladakh. Res. Biotechnol. 4, 30–43 (2013)Google Scholar
  39. 39.
    Leelasuphakul W., Sivanunsakul P., Phongpaichit S.: Purification, characterization and synergistic activity of β-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzyme Microb. Technol. 38, 990–997 (2006)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2016

Authors and Affiliations

  • Karthik Periyasamy
    • 1
    • 3
    • 4
    • 5
  • Laishram Santhalembi
    • 2
  • Gérard Mortha
    • 3
    • 4
    • 5
  • Marc Aurousseau
    • 3
    • 4
    • 5
  • Agnès Guillet
    • 3
    • 4
    • 5
  • David Dallerac
    • 3
    • 4
    • 5
  • Subramanian Sivanesan
    • 1
    Email author
  1. 1.Department of Applied Science and Technology, Environmental Management LaboratoryA.C. Tech, Anna UniversityChennaiIndia
  2. 2.Centre for BiotechnologyAnna UniversityChennaiIndia
  3. 3.Univ. Grenoble Alpes, LGP2GrenobleFrance
  4. 4.CNRS, LGP2GrenobleFrance
  5. 5.AgefpiSaint Martin d’HèresFrance

Personalised recommendations