Skip to main content
Log in

Fiber–Matrix Interactions in Fiber-Reinforced Concrete: A Review

  • Review Article – Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A significant breakthrough in concrete technology was achieved using fibers to reinforce concrete. Various researchers have reported that fiber reinforcement can alter the brittleness of concrete. The efficiency of fiber reinforcement is based on the fiber–matrix interactions. The understanding of these interactions is a challenging engineering problem, where the frictional bond governs and the physical/chemical bond plays a minor role. This problem is extremely sophisticated because of the following nonlinear interactions: interfacial debonding, plastic material deformations, mechanical bond deformations, and frictional sliding. This paper reports a comprehensive and up-to-date literature review on the fiber–matrix interactions, and physical and theoretical modeling of the fiber–matrix interactions is reported in detail. In addition, the most important conclusions of the parametric studies of the fiber–matrix interfacial bond are summarized. The information of the pullout test standardization to assess the fiber–matrix behavior of a fiber-reinforced concrete is reviewed. The current research in the area of fiber–matrix interactions of fiber-reinforced concrete are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({A_{\rm m}, A_{\rm f} ,A_{\rm b}}\) :

The cross-sectional area of the matrix, the fiber and a concrete member, respectively

\({E_{\rm c} ,E_{\rm f} ,E_{\rm m}}\) :

Moduli of elasticity for the composite, fiber and matrix, respectively

\({K_{\rm IC}}\) :

Plane strain fracture toughness

\({L_{\rm c}}\) :

Critical length of the fiber

\({L_{\rm p}}\) :

The maximum length of the fiber at which instantaneous pullout of fiber occurs

\({L_{\rm t}}\) :

The minimum length of the fiber at which a tensile failure occurs without debonding

\({P}\) :

Shear force along the fiber–matrix interface

\({P_{\rm t}}\) :

the applied pullout load

k :

A constant correlates the relation between shear stress on the fiber–matrix interface and the corresponding relative slippage

\({l_{\rm e}}\) :

The embedded length of fibers

\({n,d_{\rm f}}\) :

Number and diameter of the fibers, respectively

s :

Slippage of the fiber due to pullout force

u :

Length of the debonded zone

x :

Variable distance parallel to the fiber length

\({\varepsilon _{\rm u}}\) :

The ultimate strain of the matrix.

\({\varepsilon _{\rm e}}\) :

The strain of the matrix corresponding to the first crack stress.

\({\tau _{\rm o}}\) :

The limiting interfacial bond strength neglecting the Poisson’s effect on fibers

\({\tau _{{\rm fd}}}\) :

the decreasing frictional bond stress corresponding to the end slip after full debonding

\({\eta}\) :

Coefficient based of the shape of the load–slip curve. It can be assumed to be equal to 0.2 for straight fibers

\({\sigma _{\rm f}}\) :

Tensile strength of fiber

\({\gamma _{\rm m}}\) :

The work of fracture of the matrix

\({{\tau}'}\) :

Frictional shear stress at fiber–matrix interface

\({\tau}\) :

Shear strength for fiber–matrix interface

\({\psi}\) :

The spacing between fibers

\({\upsilon_{\rm f} ,\upsilon_{\rm m}}\) :

The Poisson’s ratio for the fiber and the matrix, respectively

\({\delta}\) :

Fiber orientation factor

\({\Delta ,\Delta _{\rm o}}\) :

Fiber displacement response of after complete pullout and at the end of complete pullout

\({\zeta}\) :

Damage coefficient taking a value between 0 and 1

References

  1. Mehta P.K., Monteiro P.J.: Concrete: Microstructure, Properties, and Materials, vol. 3. McGraw-Hill, New York (2006)

    Google Scholar 

  2. Bartos P.: Review paper: bond in fibre reinforced cements and concretes. Int. J. Cement Compos. Lightweight Concrete 3(3), 159–177 (1981). doi:10.1016/0262-5075(81)90049-X

    Article  Google Scholar 

  3. Georgiadi-Stefanidi K., Euripidis M., Dafni P., Michalis Z.: Numerical modelling of the pull-out of hooked steel fibres from high-strength cementitious matrix, supplemented by experimental results. Constr. Build. Mater. 24(12), 2489–2506 (2010). doi:10.1016/j.conbuildmat.2010.06.007

    Article  Google Scholar 

  4. Naaman A.E.: Engineered steel fibers with optimal properties for reinforcement of cement composites. J. Adv. Concrete Technol. 1(3), 241–252 (2003). doi:10.3151/jact.1.241

    Article  Google Scholar 

  5. Gray R., Johnston C.: The influence of fibre–matrix interfacial bond strength on the mechanical properties of steel fibre reinforced mortars. Int. J. Cement Compos. Lightweight Concrete 9(1), 43–55 (1987). doi:10.1016/0262-5075(87)90036-4

    Article  Google Scholar 

  6. Maage M.: Interaction between steel fibers and cement based matrixes. Mater. Constr. 10(5), 297–301 (1977). doi:10.1007/BF02478831

    Article  Google Scholar 

  7. Chan Y., Li V.C.: Effects of transition zone densification on fiber/cement paste bond strength improvement. Adv. Cement Based Mater. 5(1), 8–17 (1997). doi:10.1016/S1065-7355(97)90010-9

    Article  Google Scholar 

  8. Shannag M., Brincker R., Hansen W.: Pullout behavior of steel fibers from cement-based composites. Cement Concrete Res. 27(6), 925–936 (1997). doi:10.1016/S0008-8846(97)00061-6

    Article  Google Scholar 

  9. Li V.C., Stang H.: Interface property characterization and strengthening mechanisms in fiber reinforced cement based composites. Adv. Cement Based Mater. 6(1), 1–20 (1997). doi:10.1016/S1065-7355(97)90001-8

    Article  Google Scholar 

  10. Lee Y., Kang S., Kim J.: Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix. Constr. Build. Mater. 24(10), 2030–2041 (2010). doi:10.1016/S1065-7355(97)90001-8

    Article  Google Scholar 

  11. Li Z., Mobasher B., Shah S.P.: Characterization of interfacial properties in fiber-reinforced cementitious composites. J. Am. Ceram. Soc. 74(9), 2156–2164 (1991). doi:10.1111/j.1151-2916.1991.tb08276.x

    Article  Google Scholar 

  12. Gray R.: Experimental techniques for measuring fibre/matrix interfacial bond shear strength. Int. J. Adhes. Adhes. 3(4), 197–202 (1983). doi:10.1016/0143-7496(83)90094-5

    Article  Google Scholar 

  13. DiFrancia C., Ward T., Claus R.: The single-fibre pull-out test. 1: review and interpretation. Compos. Part A Appl. Sci. Manuf. 27(8), 597–612 (1996). doi:10.1016/1359-835X(95)00069-E

    Article  Google Scholar 

  14. Wang Y., Li V.C., Backer S.: Modelling of fibre pull-out from a cement matrix. Int. J. Cement Compos. Lightweight Concrete 10(3), 143–149 (1988). doi:10.1016/0262-5075(88)90002-4

    Article  Google Scholar 

  15. Lin Z., Kanda T., Li V.C.: On interface property characterization and performance of fiber reinforced cementitious composites. Concrete Sci. Eng. 1(3), 173–184 (1999)

    Google Scholar 

  16. Beaumont P., Aleszka J.: Cracking and toughening of concrete and polymer-concrete dispersed with short steel wires. J. Mater. Sci. 13(8), 1749–1760 (1978). doi:10.1007/BF00548738

    Article  Google Scholar 

  17. Chin C., Xiao R.: Experimental and nonlinear finite element analysis of fiber-cementitious matrix bond-slip mechanism. High Perform. Fiber Reinf. Cement Compos. 6, 145–152 (2012). doi:10.1007/978-94-007-2436-5_18

    Article  Google Scholar 

  18. Robins P., Austin S., Jones P.: Pull-out behaviour of hooked steel fibres. Mater. Struct. 35(7), 434–442 (2002). doi:10.1007/BF02483148

    Article  Google Scholar 

  19. Prudencio L. Jr, Simon A., Peter J., Hugo A., Peter R.: Prediction of steel fibre reinforced concrete under flexure from an inferred fibre pull-out response. Mater. Struct. 39(6), 601–610 (2006). doi:10.1617/s11527-006-9091-2

    Article  Google Scholar 

  20. Grünewald S.: Performance-based design of self-compacting fibre reinforced concrete. Delft University Press, Delft, The Netherlands (2004)

    Google Scholar 

  21. Wille, K.; Naaman, A.: Bond stress-slip behavior of steeh fibers embedded in ultra high performance concrete. In: ECF18, Dresden (2013)

  22. Kim J., Kim D., Kang S., Lee J.: Influence of sand to coarse aggregate ratio on the interfacial bond strength of steel fibers in concrete for nuclear power plant. Nuclear Eng. Des. 252, 1–10 (2012). doi:10.1016/j.nucengdes.2012.07.004

    Article  Google Scholar 

  23. Richardson A., Heather M.: Improving the performance of concrete using 3D fibres. Procedia Eng. 51, 101–109 (2013). doi:10.1016/j.proeng.2013.01.016

    Article  Google Scholar 

  24. Naaman, A.E.: A statistical theory of strength for fiber reinforced concrete. Ph.D. Thesis, Massachusetts Institute of Technology (1972)

  25. Abu-Lebdeh T., Hamoush S., Zornig B.: Rate effect on pullout behavior of steel fibers embedded in very-high strength concrete. Am. J. Eng. Appl. Sci. 3(2), 454 (2010)

    Article  Google Scholar 

  26. Abu-Lebdeh T., Sameer H., William H., Brian Z.: Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites. Constr. Build. Mater. 25(1), 39–46 (2011). doi:10.1016/j.conbuildmat.2010.06.059

    Article  Google Scholar 

  27. Tuyan M., Yazıcı H.: Pull-out behavior of single steel fiber from SIFCON matrix. Constr. Build. Mater. 35, 571–577 (2012). doi:10.1016/j.conbuildmat.2012.04.110

    Article  Google Scholar 

  28. Singh S., Shukla A., Brown R.: Pullout behavior of polypropylene fibers from cementitious matrix. Cement Concrete Res. 34(10), 1919–1925 (2004). doi:10.1016/j.cemconres.2004.02.014

    Article  Google Scholar 

  29. Barluenga G.: Fiber–matrix interaction at early ages of concrete with short fibers. Cement Concrete Res. 40(5), 802–809 (2010). doi:10.1016/j.cemconres.2009.11.014

    Article  Google Scholar 

  30. Kim J.J., Dong J., Su T., Jang H.: Influence of sand to coarse aggregate ratio on the interfacial bond strength of steel fibers in concrete for nuclear power plant. Nuclear Eng. Des. 252, 1–10 (2012). doi:10.1016/j.nucengdes.2012.07.004

    Article  Google Scholar 

  31. Ali M., Li X., Chouw N.: Experimental investigations on bond strength between coconut fibre and concrete. Mater. Des. 44, 596–605 (2013). doi:10.1016/j.matdes.2012.08.038

    Article  Google Scholar 

  32. Boshoff W., Mechtcherine V., van Zijl G.: Characterising the time-dependant behaviour on the single fibre level of SHCC: Part 1: mechanism of fibre pull-out creep. Cement Concrete Res. 39(9), 779–786 (2009). doi:10.1016/j.cemconres.2009.06.007

    Article  Google Scholar 

  33. Boshoff W., Mechtcherine V., van Zijl G.: Characterising the time-dependant behaviour on the single fibre level of SHCC—Part 2: the rate effects on fibre pull-out tests. Cement Concrete Res. 39(9), 787–797 (2009). doi:10.1016/j.cemconres.2009.06.006

    Article  Google Scholar 

  34. Chan Y., Chu S.: Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. Cement Concrete Res. 34(7), 1167–1172 (2004). doi:10.1016/j.cemconres.2003.12.023

    Article  Google Scholar 

  35. Wu H., Li V.C.: Fiber/cement interface tailoring with plasma treatment. Cement Concrete Compos. 21(3), 205–212 (1999). doi:10.1016/S0958-9465(98)00053-5

    Article  Google Scholar 

  36. Sebaibi N., Mahfoud B., Nor Edine A., Christophe B.: Mechanical properties of concrete-reinforced fibres and powders with crushed thermoset composites: The influence of fibre/matrix interaction. Constr. Build. Mater. 29, 332–338 (2012). doi:10.1016/j.conbuildmat.2011.10.026

    Article  Google Scholar 

  37. Sedan D., Cécile P., Agnèse S., Thierry C.: Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction. J. Eur. Ceram. Soc. 28(1), 183–192 (2008). doi:10.1016/j.jeurceramsoc.2007.05.019

    Article  Google Scholar 

  38. Mu B., Meyer C., Shimanovich S.: Improving the interface bond between fiber mesh and cementitious matrix. Cement Concrete Res. 32(5), 783–787 (2002). doi:10.1016/S0008-8846(02)00715-9

    Article  Google Scholar 

  39. Markovich I., Van Mier J., Walraven J.: Single fiber pullout from hybrid fiber reinforced concrete. HERON 46(3), 191–200 (2001)

    Google Scholar 

  40. Li V.C., Cynthia W., Shuxin W., Atsuhisa O., Tadashi S.: Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC). ACI Mater. J. Am. Concrete Inst. 99(5), 463–472 (2002)

    Google Scholar 

  41. Lawrence P.: Some theoretical considerations of fibre pull-out from an elastic matrix. J. Mater. Sci. 7(1), 1–6 (1972). doi:10.1007/BF00549541

    Article  Google Scholar 

  42. Laws V.: The efficiency of fibrous reinforcement of brittle matrices. J. Phys. D Appl. Phys. 4(11), 1737 (1971). doi:10.1088/0022-3727/4/11/318

    Article  Google Scholar 

  43. Aveston J., Kelly A.: Theory of multiple fracture of fibrous composites. J. Mater. Sci. 8(3), 352–362 (1973). doi:10.1007/BF00550155

    Article  Google Scholar 

  44. Swamy R., Mangat P., Rao C.K.: The mechanics of fiber reinforcement of cement matrices. Spec. Publ. 44, 1–28 (1974)

    Google Scholar 

  45. Naaman A., Argon A., Moavenzadeh F.: A fracture model for fiber reinforced cementitious materials. Cement Concrete Res. 3(4), 397–411 (1973). doi:10.1016/0008-8846(73)90078-1

    Article  Google Scholar 

  46. Allen H.: Stiffness and strength of two glass–fiber reinforced cement laminates. J Compos. Mater. 5(2), 194–207 (1971). doi:10.1177/002199837100500205

    Article  Google Scholar 

  47. Nair, N.: Mechanics of glass fibre reinforced cement. In: Rilem Symposium. The Construction Press Ltd Hornby (1975)

  48. Argon A., Shack W.: Opening Paper: Theories of Fibre Cement and Fibre Concrete. DTIC Document, Fort Belvoir (1975)

    Google Scholar 

  49. Bartoš P.: Analysis of pull-out tests on fibres embedded in brittle matrices. J. Mater. Sci. 15(12), 3122–3128 (1980). doi:10.1007/BF00550385

    Article  Google Scholar 

  50. Naaman A.E., George G., Jamil M., Husam S.: Fiber pullout and bond slip. I: analytical study. J. Struct. Eng. 117(9), 2769–2790 (1991). doi:10.1061/(ASCE)0733-9445(1991)117:9

    Article  Google Scholar 

  51. Bentur A., Mindess S.: Fibre reinforced cementitious composites, 2nd edn. CRC Press, Boca Raton (2006)

    Google Scholar 

  52. Cunha, V.; Barros, J.; Sena-Cruz, J.M.: Pullout behaviour of hooked-end steel fibres in self-compacting concrete. Civil Engineering, Report 07-DC/E06.Universidade do Minho, Guimarães

  53. Aiello M., Leuzzi F., Centonze G., Maffezzoli A.: Use of steel fibres recovered from waste tyres as reinforcement in concrete: pull-out behaviour, compressive and flexural strength. Waste Manag. 29(6), 1960–1970 (2009). doi:10.1016/j.wasman.2008.12.002

    Article  Google Scholar 

  54. Hughes B., Fattuhi N.: Load–deflection curves for fibre-reinforced concrete beams in flexure. Mag. Concrete Res. 29(101), 199–206 (1977). doi:10.1680/macr.1977.29.101.199

    Article  Google Scholar 

  55. Gray, R.; Johnston, C.: The measurement of fibre–matrix interfacial bond strength in steel fibre-reinforced cementitious composites. In: Proceedings of the RILEM Symposium (1978)

  56. Pinchin D., Tabor D.: Inelastic behaviour in steel wire pull-out from Portland cement mortar. J. Mater. Sci. 13(6), 1261–1266 (1978). doi:10.1007/BF00544732

    Article  Google Scholar 

  57. Pinchin D.: Poisson contraction effects in aligned fibre composites. J. Mater. Sci. 11(8), 1578–1581 (1976). doi:10.1007/BF00540895

    Article  Google Scholar 

  58. Zīle E., Zīle O.: Effect of the fiber geometry on the pullout response of mechanically deformed steel fibers. Cement Concrete Res. 44, 18–24 (2013). doi:10.1016/j.cemconres.2012.10.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassir M. Abbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, Y.M., Iqbal Khan, M. Fiber–Matrix Interactions in Fiber-Reinforced Concrete: A Review. Arab J Sci Eng 41, 1183–1198 (2016). https://doi.org/10.1007/s13369-016-2099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2099-1

Keywords

Navigation