Skip to main content
Log in

Rainfall–Runoff Modeling Using Support Vector Machine in Snow-Affected Watershed

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Flood is one of the devastating natural disasters prediction of which is significantly important. Rainfall–runoff process and flooding are physical phenomena that their investigation is very difficult due to effectiveness of different parameters. Various methods have been implemented to analyze these phenomena. The aim of current study is to investigate the performance of the artificial neural network (ANN) (hyperbolic tangent and sigmoid) and support vector machine (SVM) (regression type-1 and regression type-2) models to simulate the rainfall–runoff process influenced by snow water equivalent (SWE) height in Roodak watershed, Tehran province, Iran. So, 92 MODIS images were gained from NASA website for three water years of 2003–2005. Then, snow cover areas in all images were extracted and finally SWE values were calculated. Also, the data of precipitation, temperature and discharge for the mentioned years were used for modeling. According to the results, ANN with the hyperbolic tangent function, rainfall-temperature-SWE inputs, 1-day delay and RMSE and \({R^{2}}\) of 0.024 and 0.77, and the model with the sigmoid transfer function, rain-temperature-SWE inputs and RMSE and \({R^{2}}\) of 0.026 and 0.75 had better prediction capability than the other models. This indicates that the SWE has improved the accuracy of the models. The results of the SVM model indicate that the model with the rainfall-temperature-SWE, 1-delay, type-1 regression, RBF function and RMSE and \({R^{2}}\) of 0.054 and 0.030 had better prediction capability than other models. This also shows that consideration of the SWE enhances the performance and accuracy of the SVM models. Moreover, comparing the results of ANN and SVM models, it can be concluded that ANN model with the rainfall-temperature-SWE inputs, 1-day delay, and the hyperbolic tangent function had better predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tabari, H.; Maroufi, S.; Zare, H.; Amiri, R.; Sharifi M.: Comparison of hybrid and ANN methods for estimation of SWE in Samsami sub-watershed. In: Third Water Resources Management Conference, pp. 1–6 (2008)

  2. Mashayekhi, D.: The use of snow hydrology for water resources. Off. Water Resour. Surf. Water Sect. (2011) (in Persian)

  3. Mahmodian A.H., Ghasemi Gh., Fini H., Sarmadi M.: Shemiran Township, 3rd edn. Iranian Encyclopedia Foundation Press, New York (2009)

    Google Scholar 

  4. Nasri M., Modarres R., Dastorani M.T.: Application of artificial neural network for runoff estimation case study: Plajan Basin-Zayandehrud watershed. J. Q. Environ. 2(5), 23–37 (2009)

    Google Scholar 

  5. O’Connor, K.: Applied hydrology deterministic. In: Unpublished Lecture Notes. Department of Engineering Hydrology, National University of Ireland, Galway (1997)

  6. Chen J., Adams B.J.: Integration of artificial neural networks with conceptual models in rainfall–runoff modeling. J. Hydrol. 318(1), 232–249 (2006)

    Article  Google Scholar 

  7. Duan D., Fermini B., Nattel S.: Sustained outward current observed after I (to1) inactivation in rabbit atrial myocytes is a novel Cl-current. Am. J. Physiol.-Heart Circ. Physiol. 263(6), H1967–H1971 (1992)

    Google Scholar 

  8. Sorooshian S., Duan Q., Gupta V.K.: Calibration of rainfall–runoff models: application of global optimization to the Sacramento soil moisture accounting model. Water Resour. Res. 29(4), 1185–1194 (1993)

    Article  Google Scholar 

  9. Hsu K.-l., Gupta H.V., Sorooshian S.: Artificial neural network modeling of the rainfall–runoff process. Water Resour. Res. 31(10), 2517–2530 (1995)

    Article  Google Scholar 

  10. Wang W., Gelder P.H.V., Vrijling J., Ma J.: Forecasting daily streamflow using hybrid ANN models. J. Hydrol. 324(1), 383–399 (2006)

    Article  Google Scholar 

  11. Shamseldin A.Y.: Application of a neural network technique to rainfall–runoff modelling. J. Hydrol. 199(3), 272–294 (1997)

    Article  Google Scholar 

  12. Tokar A.S., Johnson P.A.: Rainfall–runoff modeling using artificial neural networks. J. Hydrol. Eng. 4(3), 232–239 (1999)

    Article  Google Scholar 

  13. Tokar A.S., Markus M.: Precipitation-runoff modeling using artificial neural networks and conceptual models. J. Hydrol. Eng. 5(2), 156–161 (2000)

    Article  Google Scholar 

  14. Bhattacharya, B.; Solomatine, D.: Application of artificial neural network in stage–discharge relationship. In: Proc. 4th International Conference on Hydroinformatics, Iowa City, USA (2000)

  15. Dawson C., Wilby R.: Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 25(1), 80–108 (2001)

    Article  Google Scholar 

  16. Baratti R., Cannas B., Fanni A., Pintus M., Sechi G.M., Toreno N.: River flow forecast for reservoir management through neural networks. Neurocomputing 55(3), 421–437 (2003)

    Article  Google Scholar 

  17. Anctil F., Rat A.: Evaluation of neural network streamflow forecasting on 47 watersheds. J. Hydrol. Eng. 10(1), 85–88 (2005)

    Article  Google Scholar 

  18. Matreata, M.: Artificial neural networks and fuzzy logic models in operational hydrological forecasting systems. Geophys. Res. Abstr. 07889 (2006)

  19. Nilsson P., Uvo C.B., Berndtsson R.: Monthly runoff simulation: comparing and combining conceptual and neural network models. J. Hydrol. 321(1), 344–363 (2006)

    Article  Google Scholar 

  20. Khan, M.S.; Coulibaly, P.: Bayesian neural network for rainfall–runoff modeling. Water Resour. Res. 42(7) (2006)

  21. Baareh A.K., Sheta A.F., Khnaifes K.A.: Forecasting river flow in the USA: a comparison between auto-regression and neural network non-parametric models. J. Comput. Sci. 2(10), 775 (2006)

    Article  Google Scholar 

  22. Alvisi S., Mascellani G., Franchini M., Bardossy A.: Water level forecasting through fuzzy logic and artificial neural network approaches. Hydrol. Earth Syst. Sci. 10(1), 1–17 (2006)

    Article  Google Scholar 

  23. Firat M., Güngör M.: River flow estimation using adaptive neuro fuzzy inference system. Math. Comput. Simul. 75(3), 87–96 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Aqil M., Kita I., Yano A., Nishiyama S.: A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. J. Hydrol. 337(1), 22–34 (2007)

    Article  Google Scholar 

  25. Banihabib, M.; M. M. a. J. F.: ANN model for investigation of daily correlation among the stations for prediction of input current into Dez dam. Iran. Water Res. J. 4(7):25–32 (2010)

  26. Vafakhah M.: Application of artificial neural networks and adaptive neuro-fuzzy inference system models to short-term streamflow forecasting. Can. J. Civil Eng. 39(4), 402–414 (2012)

    Article  Google Scholar 

  27. Vafakhah M.: Comparison of cokriging and adaptive neuro-fuzzy inference system models for suspended sediment load forecasting. Arab. J. Geosci. 6(8), 3003–3018 (2013)

    Article  Google Scholar 

  28. Farahmand, A.S.; Golkar F.; Farahmand, M.V.: Modeling of rainfall–runoff in a river basin using artificial neural network. In: Proceedings of the First Conference of Applied Research of Water Resources. Kermanshah University of Technology, pp. 141–147 (2011)

  29. Zare Abyaneh, H.; a. M. B. V.: Evaluation of artificial intelligent and empirical models in estimation of annual runoff. J. Water Soil 25(2), 365–379 (2011)

  30. Kurtulus B., Razack M.: Modeling daily discharge responses of a large karstic aquifer using soft computing methods: artificial neural network and neuro-fuzzy. J. Hydrol. 381(1), 101–111 (2010)

    Article  Google Scholar 

  31. Vafakhah M., Mohseni Saravi M, Mahdavi M., Alavipanah S.K.: Snowmelt runoff prediction by using artificial neural network and adaptive neuro-fuzzy inference system in Taleghan watershed. Iran-Watershed Manage. Sci. Eng. 5(14), 23–35 (2011)

    Google Scholar 

  32. Pustizadeh N., Najafi N.: Discharge prediction by comparing artificial neural network with fuzzy inference system (case study: Zayandehrud River). Iran-Water Resour. Res. 7(2), 92–97 (2011)

    Google Scholar 

  33. Dibike Y.B., Velickov S., Solomatine D., Abbott M.B.: Model induction with support vector machines: introduction and applications. J. Comput. Civil Eng. 15(3), 208–216 (2001)

    Article  Google Scholar 

  34. Asefa T., Kemblowski M., McKee M., Khalil A.: Multi-time scale stream flow predictions: the support vector machines approach. J. Hydrol. 318(1), 7–16 (2006)

    Article  Google Scholar 

  35. Yu P.-S., Chen S.-T., Chang I.-F.: Support vector regression for real-time flood stage forecasting. J. Hydrol. 328(3), 704–716 (2006)

    Article  Google Scholar 

  36. Behzad M., Asghari K., Eazi M., Palhang M.: Generalization performance of support vector machines and neural networks in runoff modeling. Expert Syst. Appl. 36(4), 7624–7629 (2009)

    Article  Google Scholar 

  37. Wang W.-C., Chau K.-W., Cheng C.-T., Qiu L.: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 374(3), 294–306 (2009)

    Article  Google Scholar 

  38. Wu C., Chau K., Li Y.: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour. Res. 45(8), W08432 (2009)

    Article  Google Scholar 

  39. Moharrampour, M.; Ranjbar, M.K.; Mehrabi, A.: Comparison of support vector machines SVM and statistica in daily flow forecasting. Life Sci. J. 10(1) (2013)

  40. Noori R., Khakpour A., Omidvar B., Farokhnia A.: Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic. Expert Syst. Appl. 37(8), 5856–5862 (2010)

    Article  Google Scholar 

  41. Okkan U., Serbes Z.A.: Rainfall–runoff modeling using least squares support vector machines. Environmetrics 23(6), 549–564 (2012)

    Article  MathSciNet  Google Scholar 

  42. Shahraiyni H., Ghafouri M., Shouraki S., Saghafian B., Nasseri M.: Comparison between active learning method and support vector machine for runoff modeling. J. Hydrol. Hydromech. 60(1), 16–32 (2012)

    Article  Google Scholar 

  43. Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; Barton, J.; Casey, K.; Chien, J.; DiGirolamo, N.; Klein, A.; Powell, H.; Tait, A.: Algorithm theoretical basis document (ATBD) for the MODIS snow and sea ice-mapping algorithms. NASA GSFC (2001)

  44. Hall D., Foster J., Verbyla D., Klein A., Benson C.: Assessment of snow-cover mapping accuracy in a variety of vegetation-cover densities in central Alaska. Remote Sens. Environ. 66(2), 129–137 (1998)

    Article  Google Scholar 

  45. Lee S., Ryu J.-H., Lee M.-J., Won J.-S.: The application of artificial neural networks to landslide susceptibility mapping at Janghung, Korea. Math. Geol. 38(2), 199–220 (2006)

    Article  Google Scholar 

  46. Coulibaly P., Anctil F., Bobee B.: Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 230(3), 244–257 (2000)

    Article  Google Scholar 

  47. Cristianini N., Shawe-Taylor J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge university press, Cambridge (2000)

    Book  MATH  Google Scholar 

  48. Kecman V.: Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. MIT press, Cambridge (2001)

    MATH  Google Scholar 

  49. Kakaei Lafdani E., Moghaddam Nia A., Ahmadi A.: Daily suspended sediment load prediction using artificial neural networks and support vector machines. J. Hydrol. 478(0), 50–62 (2013)

    Article  Google Scholar 

  50. Lorrai M., Sechi G.: Neural nets for modelling rainfall–runoff transformations. Water Resour. Manage. 9(4), 299–313 (1995)

    Article  Google Scholar 

  51. Raghuwanshi N., Singh R., Reddy L.: Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India. J. Hydrol. Eng. 11(1), 71–79 (2006)

    Article  Google Scholar 

  52. Das S.K., Samui P., Sabat A.K.: Prediction of field hydraulic conductivity of clay liners using an artificial neural network and support vector machine. Int. J. Geomech. 12(5), 606–611 (2011)

    Article  Google Scholar 

  53. Muduli P.K., Das M.R., Samui P., Kumar Das S.: Uplift capacity of suction caisson in clay using artificial intelligence techniques. Mar. Georesour. Geotechnol. 31(4), 375–390 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Vafakhah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedighi, F., Vafakhah, M. & Javadi, M.R. Rainfall–Runoff Modeling Using Support Vector Machine in Snow-Affected Watershed. Arab J Sci Eng 41, 4065–4076 (2016). https://doi.org/10.1007/s13369-016-2095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2095-5

Keywords

Navigation