Skip to main content
Log in

Characteristics of Cyclic Shear Behavior of Sandy Soils: A Laboratory Study

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a laboratory study of the influence of relative density on the liquefaction potential of a sandy soil using the triaxial apparatus. The study is based on undrained triaxial tests performed on samples at an initial relative density RD = 15, 50 and 65 % under a confining pressure of 100 kPa using a dry deposition method. Samples were subjected to quasi-static undrained cyclic tests. The paper is composed of three parts. In the first part the used materials and their characteristics are presented. The second part is devoted to the experimental procedures and the device used. The third part investigates the influence of relative density on the liquefaction potential of the three sands (Hostun Rf, Chlef and Rass). This study also explores the influence of particle size on the liquefaction potential. The test results indicate that consistent results were obtained and show clearly that increasing the relative density leads to an important improvement in the liquefaction resistance of sand. This effect is very pronounced when the initial relative density increases from 50 to 65 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({\rho_{{\rm s}}}\) :

Specific density of the solid grains

D 10 :

Effective grain diameter

D 50 :

Mean grain size of sand

D :

Initial diameter of sample

C u :

Coefficient of uniformity (C u = D 60/D 10)

CSR:

Cyclic stress ratio (\({{{CSR}}=q_{\rm m} /2\cdot{p_{\rm c}}^{\prime})}\)

e max :

Maximum void ratio

e min :

Minimum void ratio

H :

Initial height of sample

N c :

Number of cycles

RD:

Relative density

\({p_{{\rm c}}^{\prime}}\) :

Initial effective confining pressure

q :

Deviator stress

\({P^{\prime}}\) :

Effective mean pressure

q m :

Cyclic loading amplitude

\({\Delta u}\) :

Excess pore pressure

\({\varepsilon_{{\rm a}}}\) :

Axial strain

UTH:

Undrained test of Hostun sand

UTR:

Undrained test of Rass sand

UTC:

Undrained test of Chlef sand

References

  1. Mohamad R., Dobry R.: Undrained monotonic and cyclic strength of sands. J. Geotech. Eng. 112(10), 941–958 (1986)

    Article  Google Scholar 

  2. Konrad J.M.: Undrained response of loosely compacted sands during monotonic and cyclic compression tests. Géotechnique 43(1), 69–89 (1993)

    Article  Google Scholar 

  3. Hyodo M., Tanimizu H., Yasufuku N., Murata H.: Undrained cyclic and monotonic triaxial behaviour of saturated loose sand. Soils Found. 34(1), 19–32 (1994)

    Article  Google Scholar 

  4. Tatsuoka F., Miura S., Yoshimi Y., Yasuda S., Makihara Y.: Cyclic undrained triaxial strength of sand by a cooperative test program. Soils Found. 26, 117–128 (1986b)

    Article  Google Scholar 

  5. Finn, W.D.L.; Emery, J.J.; Gupta, Y.P.: A shaking table study of the liquefaction of saturated sands during earthquake. In: Proceedings 3rd European Symposium on Earthquake Engineering, pp. 253–262 (1970)

  6. Belkhatir M., Arab A., Della N., Hanifi M., Schanz T.: Influence of inter-granular void ratio on monotonic and cyclic undrained shear response of sandy soils. J. CRME (CRAS) 338, 290–303 (2010)

    MATH  Google Scholar 

  7. Belkhatir M., Arab A., Della N.: Liquefaction resistance of Chlef river silty sand: effect of low plastic fines and other parameters. Acta Polytech. Hung. 7(2), 119–137 (2010)

    Google Scholar 

  8. Polito C.P., Martin J.R.: Effects of non-plastic fines on the liquefaction resistance of sands. J. Geotech. Geoenviron. Eng. 127(5), 408–415 (2001)

    Article  Google Scholar 

  9. Della N., Arab A., Belkhatir M.: Static liquefaction of sandy soil: An experimental investigation into the effects of saturation and initial state. Acta Mech. 218(1-2), 175–186 (2010)

    Article  MATH  Google Scholar 

  10. Belkhatir M., Schanz T., Arab A., Della N., Kadri A.: Insight into the effects of gradation on the pore pressure generation of sand–silt mixtures. Geotechn. Test. J. 37(5), 922–931 (2014)

    Google Scholar 

  11. Arab, A.: Comportement des Sols sous Chargement Monotone et Cyclique. Ph.D. dissertation, University of Sciences and Technology of Oran, Algeria (2008)

  12. Krim A., Zitouni Z., Arab A., Belkhatir M.: Identification of the behavior of sandy soil to static liquefaction and microtomography. Arabian J. Geosci. 6(7), 2211–2224 (2013)

    Article  Google Scholar 

  13. Benahmed N., Canou J., Dupla J.C.: Structure initiale et propriétés de liquefaction statique d’un sable. J. CRME (CRAS) 332, 887–894 (2004)

    MATH  Google Scholar 

  14. Colliat, J.L.: Comportement des matériaux granulaires sous forte contraintes, influence de la nature minéralogique du matériau étudié. Ph.D. dissertation, Institute of Mechanic of Grenoble, Grenoble, France (1986)

  15. Fargeix, D.: Conception et réalisation d’une presse triaxiale dynamique-application à la mesure des propriétés des sols sous sollicitations sismiques. Ph.D. dissertation, Institute of Mechanic of Grenoble, Grenoble, France (1986)

  16. Flavigny E., Desrues J., Palayer B.: Le sable d’Hostun Rf. Rev. Fr. Géotech. 53, 67–70 (1990)

    Google Scholar 

  17. Biarez J., Ziani F.: Introduction aux lois de comportement des sables très peu denses. Rev. Fr. Géotech. 54, 65–73 (1991)

    Google Scholar 

  18. Lancelot L., Shahrour I., Al Mahmoud M.: Comportement du sable d’Hostun sous faibles contraintes. Rev. Fr. Géotech. 74, 63–74 (1996)

    Google Scholar 

  19. Doanh T., Ibraim E., Matiotti R.: Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 1: experimental observations. Mech. Cohesive Frict. Mater. 2, 47–70 (1997)

    Article  Google Scholar 

  20. Al Mahmoud, M.: Etude en laboratoire du comportement des sables sous faibles contraintes. Ph.D. dissertation, University of Sciences and Technology of Lille, Lille, France (1997)

  21. Hoque E., Tatsuoka F.: Anisotropy in the elastic deformation of granular materials. Soils Found. 38(1), 163–179 (1998)

    Article  Google Scholar 

  22. Bishop A.W., Wesley L.D.: A hydraulic triaxial apparatus for controlled stress path testing. Geotechnique 4, 657–670 (1975)

    Article  Google Scholar 

  23. Ladd R.S.: Preparing test specimen using under compaction. Geotech. Test. J. GTJODJ 1, 16–23 (1978)

    Article  Google Scholar 

  24. Chan C.K.: Instruction Manual, CKC E/P Cyclic Loading Triaxial System User’s Manual. Soil Engineering Equipment Company, San Francisco (1985)

    Google Scholar 

  25. Lade P.V., Duncan J.M.: Cubical triaxial tests on cohesionless soil. J. Soil Mech. Found. Div. ASCE 99(SM10), 793–812 (1973)

    Google Scholar 

  26. Arab A., Shahrour I., Lancelot L.: A laboratory study of liquefaction of partially saturated sand. J. Iber. Geol. 37(1), 29–36 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krim, A., Arab, A., Bouferra, R. et al. Characteristics of Cyclic Shear Behavior of Sandy Soils: A Laboratory Study. Arab J Sci Eng 41, 3995–4005 (2016). https://doi.org/10.1007/s13369-016-2064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2064-z

Keywords

Navigation