Skip to main content
Log in

Low-Power Multimodal Switch for Leakage Reduction and Stability Improvement in SRAM Cell

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Memory block occupies most of the integrated chip area and an improvement in memory cell performance will enhance the overall system performance. Ever increasing levels of on-chip integration of static random access memory (SRAM) increases leakage and degrades cell stability. In this paper a low-power multimodal switch (LPMS) power gating structure is proposed to minimize leakage and improve data stability in SRAM cell. The proposed design provides maximum of 91% reduction in leakage power and 23.5% reduction in dynamic power over conventional methods. Read and write margins are enhanced by 4.7 and 7.5% respectively. Proposed LPMS technique offers good leakage reduction and stability even under different operating parameter variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kao, J.; Narendra, S.; Chandrakasan, A.: Sub threshold leakage modeling and reduction techniques. In: Proceedings of IEEE/ACM Conference CAD, pp. 141–148 (2002)

  2. Taur Y.: CMOS design near the limit of scaling. IBM J. Res. Dev. 46, 213–222 (2002)

    Article  Google Scholar 

  3. Ho, D.; Iniewski, K.; Kasnavi, S.; Ivanov, A.; Natarajan, S.: Ultra-low power 90nm 6T SRAM cell for wireless sensor network applications. In: Proceedings of the International Symposium on CAS, 4 pp (2006)

  4. Huang, P.; Xing, Z.; Wang, T.; Wei, Q.: A brief survey on power gating design. In: Proceedings of the 10th IEEE International Conference on SSICAT, pp. 788–790 (2010)

  5. Jiang, H.; Marek-Sadowska, M.; Nassif, S.R.: Benefits and costs of power-gating technique. In: Proceedings of the IEEE International Conference on CD: VLSI CAP, pp. 559–566 (2005)

  6. Agarwal, K.; Austin, T.X.; Deogun,H.; Sylvester,D.; Nowka,K.: Power gating with multiple sleep modes. In: Proceedings of the 7th International Symposium on QED, pp. 633–637 (2006)

  7. Khoshavi, N.; Ashraf, R.A.; DeMara, R.F.: Applicability of power-gating strategies for aging mitigation of CMOS logic path. In: Proceedings of the International Midewest Symposium CAS, pp. 929–932 (2014)

  8. Lorenzo, R.; Chaudhary, S.: A novel all NMOS leakage feedback with data retention technique. In: Proceedings of the IEEE International Conference on CARES, pp. 16–18 (2013)

  9. Takeda, S.; Miwa, S.; K. Usami, K.; Nakamura, H.: Efficient leakage power saving by sleep depth controlling for Multi-mode Power Gating. In: Proceedings of the 13th International Symposium on Quality Electronic Design (ISQED), pp. 625-632 (2012)

  10. Pramod Kumar, M.P.; Augustine Fletcher, A.S: A novel hybrid multiple mode power gating. In: Proceedings of the International Conference on Electronic Communication System (ICECS), pp. 1–4 (2014)

  11. Zhang Z., Kavousianos X., Chakrabarty K., Tsiatouhas Y.: Static power reduction using variation-tolerant and reconfigurable multi-mode power switches. IEEE Trans. VLSI 22, 13–16 (2014)

    Article  Google Scholar 

  12. Mutoh S., Douseki T., Matsuya Y., Aoki T., Shigemitsu S., Yamada J.: 1-V power supply high-speed digital circuit technology with multi threshold-voltage CMOS. IEEE J. SSC 30, 847–854 (1995)

    Google Scholar 

  13. Pakbaznia, E.; Fallah, F.; Pedram, M.: Charge recycling in MTCMOS circuits: concept and analysis. In: Proceedings of the IEEE/ACM Conference on DAA, pp. 97–102 (2006)

  14. Tada A., Notani H., Numa M.: A novel power gating scheme with charge recycling. IEICE Electron. Express 12, 281–286 (2006)

    Article  Google Scholar 

  15. Pakbaznia, E.; Pedram, M.: Design and application of multi-modal power-gating structures. In: Proceedings of the International Symposium on QED, pp. 120–126 (2009)

  16. Pakbaznia E., Pedram M.: Design of a tri-modal multi-threshold CMOS switch with application to data retentive power gating. IEEE Trans. VLSI Syst. 20, 380–385 (2012)

    Article  Google Scholar 

  17. Rabaey J.M.: Digital Integrated Circuits: A Design Perspective. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  18. Roy K., Prasad S.C.: Low-Power CMOS VLSI Circuit Design. Wiley, New Delhi (2009)

    Google Scholar 

  19. Weste N., Harris D.: CMOS VLSI Design: A Circuits and Systems Perspective. Addison Wesley, Boston (2010)

    Google Scholar 

  20. Keating M., Flynn D., Aitken R., Gibsons A., Shi K.: Low Power Methodology Manual for System on Chip Design. Springer, New York (2007)

    Google Scholar 

  21. Narendran, S.; Borkar, S.; De, V.; Antoniadisn, D.; Chandrakasan, A.: Scaling of stack effect and its application for leakage reduction. In: Proceedings of the International Symposium on LPED, pp. 195-200 (2001)

  22. Zhao W., Cao Y.: New generation of predictive technology model for sub-45nm early design exploration. IEEE Trans. Electron. Devices 53, 2816–2823 (2006)

    Article  MathSciNet  Google Scholar 

  23. Liao, W.; Basile, J.M.; He, L.: Leakage power modeling and reduction with data retention. In: IEEE/ACM International Conference on CAD, pp. 714–719 (2002)

  24. Singh H., Agarwal K., Sylvester D., Nowka K.J.: Enhanced leakage reduction techniques using intermediate strength power gating. IEEE Trans. VLSI Syst. 15, 1215–1224 (2007)

    Article  Google Scholar 

  25. Lee D.-H., Kwak D.-K., Min K.-S.: Comparative study on leakage current of power-gated SRAMs for 65-nm, 45-nm, and 32-nm technology nodes. J. Comput. 3, 39–47 (2008)

    Article  Google Scholar 

  26. Parke S.A., Moon J.E., Wann H.C., Ko P.K., Hu C.: Design for suppression of gate-induced drain leakage in LDD MOSFETs using a quasi-two-dimensional analytical model. IEEE Trans. Electron. Devices 39, 1694–1703 (1992)

    Article  Google Scholar 

  27. Seevinck E., List F., Lohstroh J.: Static-noise margin analysis of MOS SRAM cells. J. Solid State Circuits 22, 748–754 (1987)

    Article  Google Scholar 

  28. Wang, J.; Nalam, S.: Analyzing static and dynamic write margin for nanometer SRAMs. In: Proceedings of the ACM/IEEE International Symposium on LPED, pp. 129–134 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kavitha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, M., Govindaraj, T. Low-Power Multimodal Switch for Leakage Reduction and Stability Improvement in SRAM Cell. Arab J Sci Eng 41, 2945–2955 (2016). https://doi.org/10.1007/s13369-016-2047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2047-0

Keywords

Navigation