Advertisement

Arabian Journal for Science and Engineering

, Volume 42, Issue 1, pp 281–300 | Cite as

Slope Failure Characteristics and Slope Movement Susceptibility Assessment Using GIS in a Medium Scale: A Case Study from Ouled Driss and Machroha Municipalities, Northeast Algeria

  • Riheb Hadji
  • Khaled Rais
  • Larbi Gadri
  • Abdelmadjid Chouabi
  • Younes Hamed
Research Article - Earth Sciences

Abstract

GIS-based slope movement susceptibility (SMS) map is developed for both the Ouled Driss and Machroha districts of northeastern Algeria, using the logistic regression technique. Slope movement (SM) locations were spotted using the data from various sources. An inventory map containing 489 events occurred between 1987 and 2013 was used to extract the dependent variable. SM-related factors such as slope gradient, slope aspect, topographical elevations, lithology, faulting, drainage system, road network, land use, precipitations, and seismic disturbances were considered as independent variables. The effect of each parameter on SM occurrence was deduced from the corresponding coefficient that appeared in the logistic regression function. The results of this study indicated that slope gradient, lithology, and precipitations were statistically significant in predicting slope instability. The susceptibility map produced in this paper classified the study area into five categories of SMS. The high and very high susceptibility zones made up 38% of the total extent of the two commons and involved mid-altitude slopes in their central, eastern, and southern parts. The quality of the SMS map was validated, and it can be used for planning protective and mitigation measures.

Keywords

Landslides DEM Predictive variables Logistic regression (LR) Regression coefficient (RC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Djerbal L., Melbouci B.: Contribution to the mapping of the landslide of Aïn El Hammam (Algeria). Adv. Mater. Res. 601, 332–336 (2013)CrossRefGoogle Scholar
  2. 2.
    Bourenane, H.; Bouhadad, Y.; Guettouche, M.S.; Braham, M.: GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bull. Eng. Geol. Environ. 74(2), 337–355 (2015)Google Scholar
  3. 3.
    Djerbal L., Alimrina N., Melbouci B., Bahar R. et al.: Mapping and management of landslide risk in the city of Azazga (Algeria). In: Sassa, K. (ed.) Landslide Science for a Safer Geoenvironment, Vol.2: Methods of Landslide Studies, Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Guzzetti, F.: Landslide hazard and risk assessment. PhD thesis, University of Bonn, Bonn, Germany (2005)Google Scholar
  5. 5.
    Akgun A.: A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at Izmir, Turkey. Landslides 9(1), 93–106 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Park S., Choi C., Kim B., Kim J.: Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ. Earth Sci. 68(5), 1443–1464 (2013)CrossRefGoogle Scholar
  7. 7.
    Regmi A.D., Devkota K.C., Yoshida K., Pradhan B., Pourghasemi H.R., Kumamoto T., Akgun A.: Application of frequency ratio, statistical index, and weights-ofevidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab. J. Geosci. 7(2), 725–742 (2014)CrossRefGoogle Scholar
  8. 8.
    Francipane, A.; Arnone, E.; Lo Conti, F.; Puglisi, C.: A comparison between heuristic, statistical, and data-driven methods in landslide susceptibility assessment: an application to the briga and giampilieri catchments. In: International Conference on Hydroinformatics. http://academicworks.cuny.edu/cc_conf_hic/150 (2014).
  9. 9.
    Cervi F., Berti M., Borgatti L., Ronchetti F., Manenti F., Corsini A.: Comparing predictive capability of statistical and deterministic methods for landslide susceptibility mapping: a case study in the northern Apennines (Reggio Emilia Province, Italy). Landslides 7(4), 433–444 (2010)CrossRefGoogle Scholar
  10. 10.
    Davisa J.C., Chungb C.J., Ohlmacher G.C.: Two models for evaluating landslide hazards. Comput. Geosci. 32, 1120–1127 (2006)CrossRefGoogle Scholar
  11. 11.
    Das I., Sahoo S., van Westen C., Stein A., Hack R.: Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology 114(4), 627–637 (2010)CrossRefGoogle Scholar
  12. 12.
    Dong J., Tung Y., Chen C., Liao J., Pan Y.: Logistic regression model for predicting the failure probability of a landslide dam. Eng. Geol. 117, 52–61 (2011)CrossRefGoogle Scholar
  13. 13.
    Sujatha E.R., Rajamanickam V.: Landslide susceptibility analysis using probabilistic frequency ratio model—a geospatial based study. Arab. J. Geosci. 6(2), 429–440 (2013)CrossRefGoogle Scholar
  14. 14.
    Lee S.: Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea. Earth Surf. Process. Landf. 32, 2133–2148 (2007)CrossRefGoogle Scholar
  15. 15.
    Wieczorek G.F., Snyder J.B.: Monitoring slope movements. In: Young, R., Norby, L. (eds.) Geological Monitoring Boulder Colorado, pp. 245–271. Geological Society of America, NY (2009)Google Scholar
  16. 16.
    Bai S., Wang J., Lü G., Zhou P., Hou S., Xu S.: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the three Gorges area, China. Geomorphology 115, 23–31 (2010)CrossRefGoogle Scholar
  17. 17.
    Yilmaz I.: Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ. Earth Sci. 61(4), 821–836 (2010)CrossRefGoogle Scholar
  18. 18.
    Park S., Choi C., Kim B., Kim J.: Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ. Earth Sci. 68(5), 1443–1464 (2013)CrossRefGoogle Scholar
  19. 19.
    Kayastha P., Dhital M.R., De Smedt F.: Evaluation of the consistency of landslide susceptibility mapping: a case study from the Kankai watershed in east Nepal. Landslides 10, 785–799 (2013)CrossRefGoogle Scholar
  20. 20.
    Mebarki, A.: Hydrologie des bassins de l’est algérien : ressources en eau, aménagement et environnement. PhD thesis, Mentouri University, Constantine, Algeria (2005)Google Scholar
  21. 21.
    Mebarki A.: Cartographie automatique des précipitations: application à à l’Est algérien. Sci. Technol. B B 20, 100–107 (2003)Google Scholar
  22. 22.
    Kabouya, M.: Modélisation pluie-débit aux pas de temps mensuel et annuel en Algérie septentrionale. PhD thesis, Paris Sud Orsay University (1990)Google Scholar
  23. 23.
  24. 24.
    Vila, JM.: La chaîne alpine d’Algérie nord-oriental et des confins algéro-tunisiens. PhD thesis, P. et M. Curie, Pris VI University (1980)Google Scholar
  25. 25.
    Chouabi, A.: Etude géologique de la region de hammam N’Bails SE de guelma, Algerie. PhD thesis, paul sabatier, Toulouse University, France (1987)Google Scholar
  26. 26.
    Rosenbaum G., Lister G.S., Duboz C.: Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. J. Virtual Explor. 8, 107–130 (2002)Google Scholar
  27. 27.
    Masrouhi A., Ghanmi M., Ben Slama M.M., Ben Youssef M., Vila J.M., Zargouni F.: New tectono-sedimentary evidence constraining the timing of the positive tectonic inversion and the Eocene Atlasic phase in northern Tunisia: implication for the North African paleo-margin evolution. C. R. Geosci. 340, 771–778 (2008)CrossRefGoogle Scholar
  28. 28.
    Moretti E., Coccioni R., Guerrera F., Lahondère J.-C., Loiacono F., Puglisi D.: The Numidian sequence between Guelma and Constantine (Eastern Tell, Algeria). Terra Nova 3, 2, 153–165 (1991)CrossRefGoogle Scholar
  29. 29.
    Vila, J.M.; Feinberg, H.; Lahondere, J.C.; Gourinard, Y.; Chouabbi, A.; Magné, J.; Durand-Delga, M.: Le chenal gréseux de l’Oligocène terminale et le Miocène de Sidi Afif dans leur cadre structurale NE Algérien, origine saharienne du Numidien et calendrier des charriages Miocènes. C. R. Acad. Sci. Paris t. Serie IIA 320, 1001–1009 (1995)Google Scholar
  30. 30.
    Pybernes B., Chouabbi A., Vila J.M.: Reconstitution du substratum Jurassique–Crétacé basal du domaine des Sellaoua a partir des galets du bassin Mio-Pliocène de Hammam N’Bails. C. R. Palevol 1, 681–688 (2002)CrossRefGoogle Scholar
  31. 31.
    Menard, S.: Applied logistic regression analysis: Sage university series on quantitative applications in the social sciences, vol. 106. Sage Publishing, Thousand Oaks (1995)Google Scholar
  32. 32.
    Mancini F., Ceppi C., Ritrovato G.: GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy. Nat. Hazards Earth Syst. Sci. 10, 1851–1864 (2010)CrossRefGoogle Scholar
  33. 33.
    Das I., Stein A., Kerle N., Dadhwal V.K.: Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models. Geomorphology 179, 116–125 (2012)CrossRefGoogle Scholar
  34. 34.
    Hadmoko, D.S.; Sartohadi, J.; Samodra, G.; Christanto, N.: GIS application for omprehensive spatial landslides analysis in Kayangan Catchment, Menoreh Mountains, Java, Indonesia. In: Malet, J.P., Remaître, A.; Bogaard, T. (eds.) Landslide Processes: From Geomorphologic Mapping to Dynamic Modelling, pp. 297–302. European Center on Geomorphological Hazards Publisher, Strasbourg (2009)Google Scholar
  35. 35.
    Aleotti P., Chowdhury R.: Landslide hazard assessment, summary review and new perspectives. Bull. Eng. Geol. Environ. 58, 21–44 (1999)CrossRefGoogle Scholar
  36. 36.
    Ayalew L., Yamagishi H.: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65, 15–31 (2005)CrossRefGoogle Scholar
  37. 37.
    Pradhan B.: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 51, 350–365 (2013)CrossRefGoogle Scholar
  38. 38.
    Chau K.T., Chan J.E.: Regional bias of landslide data in generating susceptibility maps using logistic regression: case of Hong Kong Island. Landslides 2, 280–290 (2005)CrossRefGoogle Scholar
  39. 39.
    Ozdemir A., Altural T.A.: Comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J. Asian Earth Sci. 64, 180–197 (2013)CrossRefGoogle Scholar
  40. 40.
    Weidinger J.T., Schramm J., Surenian M.: On preparatory causal factors, initiating the prehistoric Tsergo Ri landslide (Langthang Himal, Nepal). Tectonophysics 260, 95–107 (1996)CrossRefGoogle Scholar
  41. 41.
    Jallouli C., Chikhaoui M., Braham A., Turki M.M., Mickus K., Benass R.: Evidence for Triassic salt domes in the Tunisian Atlas from gravity and geological data. Tectonophysics 396, 209–225 (2005)CrossRefGoogle Scholar
  42. 42.
    Yalcin A.: GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72, 1–12 (2008)CrossRefGoogle Scholar
  43. 43.
    Mastere M., VanVliet Lanoë B., Aït Brahim L., El Moulat M.: A linear indexing approach to mass movements susceptibility mapping: a case of the Chefchaouen province (Morocco). Revue Internationale de Géomatique 25(2), 245–265 (2014)CrossRefGoogle Scholar
  44. 44.
    Greenway D.R.: Vegetation and slope stability. In: Anderson, M.G., Richards, K.S. (eds.) Slope Stability, pp. 187–230. Wiley, New York (1987)Google Scholar
  45. 45.
    Fell R., Corominas J., Bonnard C., Cascini L., Leroi E., Savage W.Z.: Guidelilnes for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 102(3-4), 85–98 (2008)CrossRefGoogle Scholar
  46. 46.
    Guettouche M.S.: Modeling and risk assessment of landslides using fuzzy logic, application on the slopes of the Algerian Tell. Arab. J. Geosci. 6, 3163–3173 (2013)CrossRefGoogle Scholar
  47. 47.
    Madelin M., Beltrand G.: Spatial interpolation based mapping of spring frosts hazard in the Champagne vineyard. Meteorol. Appl. 12, 51–56 (2005)CrossRefGoogle Scholar
  48. 48.
    García-Rodríguez M.J., Malpica J.A., Benito B., Díaz M.: Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression. Gomorphology 95(3–4), 172–191 (2008)CrossRefGoogle Scholar
  49. 49.
    James S., Griffiths A.E., Mather S.M.: Mapping landslides at different scales. Q. J. Eng. Geol Hydrogeol. 48, 29–40 (2015)CrossRefGoogle Scholar
  50. 50.
    Cruden, D.M.; Varnes, D.J.: Landslide types and processes. In: Turner, A.K.; Schuster, R.L. (eds.) Landslides Investigation and Mitigation, pp. 36–75. National Research Council, Transportation and Research Board (1996)Google Scholar
  51. 51.
    Varnes, D.J.: Landslide hazard zonation: a review of principles and practice, p. 63. Unesco, Paris (1984)Google Scholar
  52. 52.
    Hadji R., Boumazbeur A., Limani Y., Baghem M., Chouabi A.: Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: A case study of Souk Ahras region, NE Algeria. Quat. Int. 302, 224–237 (2013)CrossRefGoogle Scholar
  53. 53.
    Pourghasemi H., Moradi H., Fatemi A.S.: Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat. Hazards 69, 749–779 (2013)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2016

Authors and Affiliations

  • Riheb Hadji
    • 1
    • 2
  • Khaled Rais
    • 3
  • Larbi Gadri
    • 4
  • Abdelmadjid Chouabi
    • 5
  • Younes Hamed
    • 6
    • 7
  1. 1.Department of Earth Sciences, Institute of Architecture and Earth SciencesSetif UniversitySétifAlgeria
  2. 2.LESRMHAO LaboratoryTebessa UniversityTebessaAlgeria
  3. 3.Electro-Mechanical DepartmentUniversity of SkikdaSkikdaAlgeria
  4. 4.Mines Laboratory, Mining Engineering DepartmentTebessa UniversityTebessaAlgeria
  5. 5.Laboratory of Geodynamics and Natural Resources LGRNBadji Mokhtar UniversityAnnabaAlgeria
  6. 6.Department of Earth Sciences, Faculty of SciencesGabès UniversityGabèsTunisia
  7. 7.L3E LaboratorySfax UniversitySfaxTunisia

Personalised recommendations