Skip to main content
Log in

Application of Solar Photocatalysis and Solar Photo-Fenton Processes for the Removal of Some Critical Charged Pollutants: Mineralization Trends and Formation of Reaction Intermediates

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present study investigated the efficiency of the titanium dioxide (TiO2)-assisted solar photocatalytic degradation (SPCD) process and the solar photo-Fenton degradation (SPFD) process for the removal of some critical charged aqueous-phase pollutants under solar radiation conditions in Dhahran. The findings revealed that phenol and its reaction intermediate compounds can be successfully removed via the SPCD process at acidic pH values via a one sun-type re-circulating plug flow-type reactor. A similar trend was noted for the solar photo-Fenton process, which also indicated high phenol degradation at pH of 4 and 6; however, at pH 10, the overall total organic carbon removal was low because of increased Fe-species precipitation and reduced ·OH radical formation. The SPCD process showed greater ammonia removal efficiency than the SPFD process. Based on the successful application of the SPCD process, we further investigated the degradation of other critical charged cationic and anionic pollutants using the SPCD process. Tetramethylammonium (TMA) SPCD-based degradation resulted in near-complete TMA degradation within a reaction time of 4 h. Furthermore, the intermediates produced by TMA solar-energized degradation showed a stepwise de-methylation of TMA into trimethylammonium, dimethylammonium, and methylammonium, followed by mineralization to \({{\rm NH_{4}^{+}/NH_{3}}}\) and \({{\rm NO_{3}^{-}}}\). In general, the results of the present work confirmed successful application of the SPCD process for the removal of several important pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blanco J., Malato S., Fernandez-Ibanez P., Alarcon D., Gernjak W., Maldonado M.I.: Review of feasible solar energy applications to water processes. Renew. Sustain. Energy Rev. 13, 1437–1445 (2009)

    Article  Google Scholar 

  2. Blanco-Galvez J., Fernandez-Ibanez P., Malato-Rodriguez S.: Solar photocatalytic detoxification and disinfection of water: recent overview. J. Sol. Energy Eng. 129, 4–15 (2007)

    Article  Google Scholar 

  3. Jiménez A.E., Estrada C.A., Cota A.D., Román A.: Photocatalytic degradation of DBSNa using solar energy. Sol. Energy Mater. Sol. Cells 60, 85–95 (2000)

    Article  Google Scholar 

  4. Karunakaran C., Dhanalakshmi R.: Semiconductor-catalyzed degradation of phenols with sunlight. Sol. Energy Mater. Sol. Cells 92, 1315–1321 (2008)

    Article  Google Scholar 

  5. Malato S., Fernandez-Ibanez P., Maldonado M.I., Blanco J., Gernjak W.: Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 147, 1–59 (2009)

    Article  Google Scholar 

  6. Neppolian B., Choi H.C., Sakthivel S., Arabindoo B., Murugesan V.: Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere 46, 1173–1181 (2002)

    Article  Google Scholar 

  7. Benítez F.J., Real F.J., González M., Pineda M.: Oxidation processes applied to the elimination of chlorpyrifos and acetochlor in aqueous solutions. Fresenius Environ. Bull. 15, 1484–1490 (2006)

    Google Scholar 

  8. Irmak S., Erbatur O., Kuşvuran E.: Degradation of alkylphenolic compounds in aqueous media by Fenton and ultraviolet induced Fenton reaction. Fresenius Environ. Bull. 15, 1601–1606 (2006)

    Google Scholar 

  9. Vohra M.S.: Removal of thiocyanate from synthetic wastewater using TiO2 mediated photocatalytic degradation process. Fresenius Environ. Bull. 20, 1308–1313 (2011)

    Google Scholar 

  10. Bahnemann D.: Photocatalytic water treatment: solar energy applications. Sol. Energy 77, 445–459 (2004)

    Article  Google Scholar 

  11. Fernandez-Ibanez P., Malato S., Enea O.: Photoelectrochemical reactors for the solar decontamination of water. Catal. Today 54, 329–339 (1999)

    Article  Google Scholar 

  12. Malato S., Blanco J., Richter C., Braun B., Maldonado M.I.: Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species. Appl. Catal. B Environ. 17, 347–356 (1998)

    Article  Google Scholar 

  13. Malato S., Blanco J., Richter C., Milow B., Maldonado M.I.: Solar photocatalytic mineralization of commercial pesticides: methamidophos. Chemosphere 38, 1145–1156 (1999)

    Article  Google Scholar 

  14. Malato S., Caceres J., Aguera A., Mezcua M., Hernando D., Vial J., Fernandez-Alba A.R.: Degradation of imidacloprid in water by Photo-Fenton and TiO2 photocatalysis at a solar pilot plant: a comparative study. Environ. Sci. Technol. 35, 4359–4366 (2001)

    Article  Google Scholar 

  15. Malato S., Blanco J., Vidal A., Fernandez P., Caceres J., Trincado P., Oliveira J.C., Vincent M.: New large solar photocatalytic plant: set-up and preliminary results. Chemosphere 47, 235–240 (2002)

    Article  Google Scholar 

  16. Mehos, M.; Turchi, C.; Pacheco, J.; Boegel, A.J.; Merrill, T.; Stanley, R.: Pilot-scale Study of the Solar Detoxification of VOC-contaminated Groundwater. http://www.nrel.gov/docs/legosti/old/4981.pdf (1992)

  17. Pacheco, J.E.; Tyner, C.E.: Enhancement of processes for solar photocatalytic detoxification of water. In: ASME Solar Energy Division International Solar Energy Conference (1990)

  18. Rader W.S., Solujic L., Milosavljevic E.B., Hendrix J.L.: Sunlight-induced photochemistry of aqueous solutions of hexacyanoferrate (II) and (III) ions. Environ. Sci. Technol. 27, 1875–1879 (1993)

    Article  Google Scholar 

  19. Robert D., Malato S.: Solar photocatalysis: a clean process for water detoxification. Sci. Total Environ. 291, 85–97 (2002)

    Article  Google Scholar 

  20. Romero M., Blanco J., Sanchez B., Vidal A., Malato S., Cardona A.I., Garcia E.: Solar photocatalytic degradation of water and air pollutants: challenges and perspectives. Sol. Energy 66, 169–182 (1999)

    Article  Google Scholar 

  21. UNESCO Solar Detoxification. Edited by Julián Blanco Gálvez and Sixto Malato Rodríguez, ISBN 92-3-103916-4, UNESCO Publishing Renewable Energies Series (2003)

  22. Villanueva S.F., Martinez S.S.: TiO2-assisted degradation of acid orange 7 textile dye under solar light. Sol. Energy Mater. Sol. Cells 91, 1492–1495 (2007)

    Article  Google Scholar 

  23. Yawalkar A.A., Bhathkande D.S., Pangarkar V.G., Beenackers A.A.C.M.: Solar-assisted photochemical and photocatalytic degradation of phenol. J. Chem. Tech. Biotechnol. 76, 363–370 (2001)

    Article  Google Scholar 

  24. Durán A., Monteagudo J.M., San Martín I., Aguirre M.: Decontamination of industrial cyanide-containing water in a solar CPC pilot plant. Sol. Energy 84, 1193–1200 (2010)

    Article  Google Scholar 

  25. World Solar Commission: World Solar Programme 1996–2005: Africa (ASP). Mechanisms of Implementation (An Outline). Prepared by the Secretariat of the World Solar Commission (1999)

  26. Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  27. Kumara G.R.R.A., Sultanbawa F.M., Perera V.P.S., Kottegoda I.R.M., Tennakone K.: Continuous flow photochemical reactor for solar decontamination of water using immobilized TiO2. Sol. Energy Mater. Sol. Cells 58, 167–171 (1999)

    Article  Google Scholar 

  28. Nagaveni K., Sivalingam G., Hegde M.S., Madras G.: Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environ. Sci. Technol. 38, 1600–1604 (2004)

    Article  Google Scholar 

  29. Curco D., Malato S., Blanco J., Gimenez J., Marco P.: Photocatalytic degradation of phenol: comparison between pilot-plant-scale and laboratory results. Sol. Energy 56, 387–400 (1996)

    Article  Google Scholar 

  30. Malato S., Blanco J., Richter C., Curco D., Gimenez J.: Low-concentration CPC collectors for photocatalytic water detoxification: Comparison with a medium concentrating solar collector. Water Sci. Technol. 35, 157–164 (1997)

    Article  Google Scholar 

  31. Wei T., Wan C.: Heterogeneous photocatalytic oxidation of phenol with titanium dioxide powders. Ind. Eng. Chem. Res. 30, 1293–3000 (1991)

    Article  Google Scholar 

  32. Abdullah M., Low G.K.-C., Matthews R.W.: Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J. Phys. Chem. 94, 6820–6825 (1990)

    Article  Google Scholar 

  33. Kim S., Choi W.: Kinetics and mechanisms of photocatalytic degradation of \({{\rm (CH_{3})_{{\rm n}} NH_{4}{-}{\rm n}^{+}}}\) (0 ≤  n ≤  4) in TiO2 suspension: The role of OH radicals. Environ. Sci. Technol. 36, 2019–2025 (2002)

    Article  Google Scholar 

  34. Zhu X., Castleberry S.R., Nanny M.A., Butler E.C.: Effects of pH and catalyst concentration on photocatalytic oxidation of aqueous ammonia and nitrite in titanium dioxide suspensions. Environ. Sci. Technol. 39, 3784–3791 (2005)

    Article  Google Scholar 

  35. Zhu X., Nanny M.A., Butler E.C.: Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite. J. Photochem. Photobiol. A Chem. 185, 289–294 (2007)

    Article  Google Scholar 

  36. Ogata Y., Tomizawa K., Adachi K.: Photo-oxidation of ammonia with aqueous hydrogen peroxide. Mem. Fac. Eng. Nagoya Univ. 33, 58–65 (1981)

    Google Scholar 

  37. Rodríguez M., Malato S., Pulgarin C., Contreras S., Curco D., Gimenez J., Esplugas S.: Optimizing the solar photo-Fenton process in the treatment of contaminated water. Determination of intrinsic kinetic constants for scale-up. Sol. Energy 79, 360–368 (2005)

    Article  Google Scholar 

  38. Prato-Garcia D., Vasquez-Medrano R., Hernandez-Esparza M.: Solar photoassisted advanced oxidation of synthetic phenolic wastewaters using ferrioxalate complexes. Sol. Energy 83, 306–315 (2009)

    Article  Google Scholar 

  39. Duc M., Lefevre G., Fedoroff M., Jeanjean J., Rouchaud J.C., Monteil-Rivera F., Dumonceau J., Milonjic S.: Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions. J. Environ. Radioact. 70, 61–72 (2003)

    Article  Google Scholar 

  40. González-Acevedo Z.I., Olguín M.T., Rodríguez-Martínez C.E., Frías-Palos H.: Sorption and desorption processes of selenium (VI) using non-living biomasses of aquatic weeds in horizontal flow. Water Air Soil Pollut. 223, 4119–4128 (2012)

    Article  Google Scholar 

  41. Frank S.N., Bard A.J.: Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem. 81, 1484–1488 (1997a)

    Article  Google Scholar 

  42. Lee H., Choi W.: Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms. Environ. Sci. Technol. 36, 3872–3878 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Vohra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vohra, M.S., Al-Suwaiyan, M.S., Essa, M.H. et al. Application of Solar Photocatalysis and Solar Photo-Fenton Processes for the Removal of Some Critical Charged Pollutants: Mineralization Trends and Formation of Reaction Intermediates. Arab J Sci Eng 41, 3877–3887 (2016). https://doi.org/10.1007/s13369-015-2021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-2021-2

Keywords

Navigation