Arabian Journal for Science and Engineering

, Volume 41, Issue 8, pp 2837–2846 | Cite as

Optimizing Discriminability of Globally Binarized Face Templates

  • Eslam Hamouda
  • Osama Ouda
  • Xiaohui Yuan
  • Taher Hamza
Research Article - Computer Engineering and Computer Science


Biometric systems are being increasingly deployed in various applications such as smartphones, passports and visa control, health cards, and crime investigation applications. Storing individuals biometric templates in the biometric system database makes it susceptible to threats. As a result, many biometric template protection schemes have been proposed in order to provide the protection for the biometric data against unauthorized use. Extracting binary templates from real-valued biometric data is an important stage in biometric template protection systems. Moreover, representing biometric data as binary template can speed up the biometric template processing and reduce the storage capacity needed to store the enrolled templates. Global binarization schemes binarize the original real-valued biometric template using a series of transformation functions applied to the entire template. The main defy of any global binarization scheme is the generation of such transformation functions which optimize the within-class variance and between-class variance for the transformed binary template simultaneously. In this paper, we propose a global biometric data binarization scheme that utilizes genetic algorithm to optimize the within-class variance and between-class variance for the transformed binary template simultaneously, which retains the discriminability of the binary template. Experimental results using face data sets demonstrated promising recognition performance without violating the security needs of the biometric system.


Biometrics Biometric template binarization Discretization Genetic algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jaiswal, S.; Bhadauria, S.; Jadon, R.: Biometric: case study. J. Glob. Res. Comput. Sci. 2(10), 19–49 (2011)Google Scholar
  2. 2.
    Rathgeb, C.; Uhl, A.: A survey on biometric cryptosystems and cancelable biometrics. EURASIP J. Inf. Secur. 2011, 3 (2011)Google Scholar
  3. 3.
    Feng, C.; Yuen, C.: Vulnerabilities in binary face template. In: The IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2012)Google Scholar
  4. 4.
    Chang, Y.; Zhang, W.; Chen, T.: Biometrics-based cryptographic key generation. In: The IEEE International Conference o Multimedia and Expo, pp. 2203–2206, June 2004Google Scholar
  5. 5.
    Dodis, Y.; Reyzin, L.; Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Advances in Cryptology EUROCRYPT, pp. 523–540 (2004)Google Scholar
  6. 6.
    Feng H., Wah C.: Private key generation from online handwritten signatures. Inf. Manag. Comput. Secur. 10(4), 159–164 (2002)Google Scholar
  7. 7.
    Verbitskiy, E.; Tuyls, P.; Denteneer, D.; Linnartz, J.: Reliable biometric authentication with privacy protection. In: The 24th Benelux Symposium on Information Theory, pp. 125–132 (2003)Google Scholar
  8. 8.
    Chen, C.; Veldhuis, R.; Kevenaar, T.; Akkermans, A.: Biometric quantization through detection rate optimized bit allocation. EURASIP J. Adv. Signal Process. 2009, 1 (2009)Google Scholar
  9. 9.
    Feng C., Yuen C.: Binary discriminant analysis for generating binary face template. IEEE Trans. Inf. Forensics Secur. 7(2), 613–624 (2012)CrossRefGoogle Scholar
  10. 10.
    Feng, Y.; Yuen, C.: Selection of distinguish points for class distribution preserving transform for biometric template protection. In: The IEEE International Conference on Biometrics, pp. 636–645. Seoul, August 2007Google Scholar
  11. 11.
    Feng, Y.; Yuen, C.: Class-distribution preserving transform for face biometric data security. In: The IEEE International Conference on Acoustics, Speech, Signal Processing, pp. 141–144. Honolulu, April 2007Google Scholar
  12. 12.
    Linnartz, J.; Tuyls, P.: New shielding functions to enhance privacy and prevent misuse of biometric templates. In: The 4th International Conference on Audio and Video-Based Biometric Person Authentication, pp. 393–402. Guildford, June 2003Google Scholar
  13. 13.
    Tuyls, P.; Akkermans, A.; Kevenaar, T.; Schrijen, G.; Raimond, M.; Velhhuis, J.: Practical biometric authentication with template protection. In: The 5th International Conference on Audio and Video-Based Biometric Person Authentication, pp. 436–446. New York, July 2005Google Scholar
  14. 14.
    Vielhauer, C.; Steinmetz, R.; Mayerhofer, A.: Biometric hash based on statistical features of online signatures. In: The 16th International Conference on Pattern Recognition, pp. 123–126 (2002)Google Scholar
  15. 15.
    Lim, M.; Teoh, A.; Toh, K.: An analysis on equal width quantization and linearly separable subcode encoding-based discretization and its performance resemblances. EURASIP J. Adv. Signal Process. 2011, 82 (2011)Google Scholar
  16. 16.
    Lim, M.; Teoh, A.: An effective biometric discretization approach to extract highly discriminative, informative, and privacy protective binary representation. EURASIP J. Adv. Signal Process. 2011, 107 (2011)Google Scholar
  17. 17.
    Kotsiantis, S.; Kanellopoulos, D.: Discretization techniques: a recent survey. GESTS Int. Trans. Comput. Sci. Eng. 32(1), 47–58 (2006)Google Scholar
  18. 18.
    Lim, M.; Teoh, A.: Linearly separable subcode: a novel output label with high separability for biometric discretization. In: The 5th IEEE Conference on Industrial Electronics and Applications, pp. 290–294. Taichung, June 2010Google Scholar
  19. 19.
    Teoh A., Yip W., Toh K.: Cancellable biometrics and user dependent multi-state discretization in biohash. Pattern Anal. Appl. 13(3), 301–307 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Feng, C.; Yuen, C.: Binary discriminant analysis for face template protection. In: The 20th International Conference on Pattern Recognition, pp. 874–877. Istanbul, August 2010Google Scholar
  21. 21.
    Rafael G., Woods R.: Digital Image Processing. 2nd edn. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  22. 22.
    Duda R., Hart P., Stork D.: Pattern Classification. 2nd edn. Wiley Inc., New York (2000)MATHGoogle Scholar
  23. 23.
    Pentland A., Turk M.: Eigenfaces for recognition. J. Cogn. Neurosic. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  24. 24.
    Suganthy, M.; Ramamoorthy, P.: Principal component analysis based feature extraction, morphological edge detection and localization for fast iris recognition. J. Comput. Sci. 8(9), 1428–1433 (2012)Google Scholar
  25. 25.
    Fisher, R.: The use of multiple measures in taxonomic problems. Ann. Eugen. 7(7), 179–188 (1996)Google Scholar
  26. 26.
    Belhumeur, P.; Hespanha, J.; Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)Google Scholar
  27. 27.
    Ruda R., Hart P., Stork D.: Pattern Classification. 2nd edn. Wiley Press, New York (2001)Google Scholar
  28. 28.
    David J., MacKay C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  29. 29. AT&T Laboratories, ORL face image Database.
  30. 30.
    Philips, P.; Moon, H.; Rauss, P.; Rizvi, S.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intel. 22(10) (2000)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2016

Authors and Affiliations

  • Eslam Hamouda
    • 1
  • Osama Ouda
    • 1
  • Xiaohui Yuan
    • 2
    • 3
  • Taher Hamza
    • 1
  1. 1.Faculty of Computers and InformationMansoura UniversityMansouraEgypt
  2. 2.College of Information EngineeringChina University of GeosciencesWuhanChina
  3. 3.Department of Computer Science and EngineeringUniversity of North TexasDentonUSA

Personalised recommendations