Skip to main content
Log in

The Numerical Simulation of Double-Diffusive Mixed Convection Flow in a Lid-Driven Porous Cavity with Magnetohydrodynamic Effect

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the numerical investigation of double-diffusive mixed convection with magnetohydrodynamic flow in an enclosed cavity is presented. The uniform temperature and concentration are imposed along the vertical walls and the horizontal walls which are considered as insulated. The flow behaviour is analysed for two different conditions. In first case, the top wall moves towards left at a constant velocity (U o), while the other walls remain stationary. In the second case, the top wall moves towards right with constant velocity (U o), while the other walls remain stationary. The convective flux in the transport equations is discretized using finite volume technique with third-order deferred quadratic upwind interpolation for convection kinematics scheme at the inner nodes and the second-order central difference scheme at the outer nodes. The pressure and velocity terms are coupled by SIMPLE algorithm. The present numerical simulation is compared with the reported literature and is found to be in good agreement. The Hartmann number (1 ≤ Ha ≤ 25), Lewis number (1 ≤ Le ≤ 50) and aspect ratio (1 ≤ A ≤ 2) are varied over a wide range to analyse the non-dimensional horizontal (U) and vertical velocities (V), stream line contours, temperature and concentration gradients. The present analysis is carried out at constant Buoyancy ratio (N = 1) and Prandtl (Pr = 0.7), Richardson (Ri = 1.0), Darcy (Da = 1.0) and Reynolds (Re = 100) numbers. The effect of Ha, Le and A on the average Nusselt (Nu) and Sherwood (Sh) numbers is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Aspect ratio

B o :

Magnetic induction (tesla)

C :

Concentration

D :

Mass diffusivity (m2s−1)

Da :

Darcy number (K / L 2)

F c :

Geometric function

g :

Gravitational acceleration (ms−2)

Gr C :

Grashof number ( = C ΔCL 3 / ν 2)

Gr T :

Grashof number ( = T ΔTL 3 / ν 2)

h s :

Mass transfer coefficient (ms−1)

H :

Enclosure height (m)

Ha :

Hartmann number

k :

Thermal conductivity (Wm−1K−1)

K :

Permeability (m2)

L :

Enclosure length (m)

Le :

Lewis number ( = Sc / Pr)

N :

Buoyancy ratio (= Gr T / Gr C )

Nu :

Nusselt number (= hL / k)

P :

Dimensionless pressure (= pH2 / ρν 2)

Pr :

Prandtl number ( = ν / α)

Re :

Reynolds number (= V o L / ν)

Ri :

Richardson number (Gr T / Re 2)

Sc :

Schmidt number (= ν / D)

Sh :

Sherwood number (= hsL/D)

T :

Dimensional temperature (K)

U, V :

Dimensionless velocity components along x and y axes (= u / V o)

X, Y :

Dimensionless Cartesian coordinates (= x / H)

α :

Thermal diffusivity (m2 s−1)

β :

Fluid thermal expansion coefficient (K−1)

θ :

Dimensionless temperature (TT C / T H T C )

μ :

Effective dynamic viscocity (Pa-s)

ν :

Effective kinematic viscocity (m2s−1)

ρ :

Local fluid density (kgm−3)

ρ o :

Fluid density at bottom surface (kgm−3)

ɛ :

Porosity

σ :

Fluid electrical conductivity (Wm−1K−1)

avg:

Average

C :

Cold, concentration

f :

Fluid

H :

Hot

T :

Temperature

L :

Low

References

  1. Al-Amiri A.M.: Analysis of momentum and energy transfer in a lid-driven cavity filled with a porous medium. Int. J. Heat Mass Transf. 43(1), 3513–3527 (2000)

    Article  MATH  Google Scholar 

  2. Al-Amiri A.M., Khanafer K.M., Pop I.: Numerical simulation of combined thermal and mass transport in a square lid-driven cavity. Int. J. Therm. Sci. 46(7), 662–671 (2007)

    Article  Google Scholar 

  3. Khanafer K., Chamkha A.J.: Mixed convection in a lid-driven enclosure with a fluid-saturated porous medium. Int. J. Heat Mass Transf. 42, 2465–2481 (1999)

    Article  MATH  Google Scholar 

  4. Chen C.L., Cheng C.H.: Numerical simulation of periodic mixed convection heat transfer in a rectangular cavity with a vibrating lid. Appl. Therm. Eng. 29, 2855–2862 (2009)

    Article  Google Scholar 

  5. Pekmen B., Tezer-Sezgin M.: MHD flow and heat transfer in a lid-driven porous enclosure. Int. J. Comput. Fluids 89, 191–199 (2014)

    Article  MathSciNet  Google Scholar 

  6. Lo D.C.: High-resolution simulations of magnetohydrodynamic free convection in an enclosure with transverse magnetic field using velocity–vorticity formulation. Int. Commun. Heat Mass Transf. 37, 514–523 (2010)

    Article  Google Scholar 

  7. Bian W., Vasseur P., Bilgen E., Meng F.: Effect of electromagnetic field on natural convection in an inclined porous layer. Int. J. Heat Fluid Flow 17, 36–44 (1996)

    Article  Google Scholar 

  8. Costa V.A.F., Sousa A.C.M., Vasseur P.: Natural convection in square enclosures filled with fluid-saturated porous media under the influence of the magnetic field induced by two parallel vertical electric currents. Int. J. Heat Mass Transf. 55, 7321–7329 (2012)

    Article  Google Scholar 

  9. Hasanpour A., Farhadi M., Sedighi K., Ashorynejad H.R.: Numerical study of Prandtl effect on MHD flow at a lid-driven porous cavity. Int. J. Numer. Methods Fluids 70, 886–898 (2012)

    Article  MathSciNet  Google Scholar 

  10. Nield D.A.: Modelling the effects of a magnetic field or rotation on flow in a porous medium momentum equation and anisotropic permeability analogy. Int. J. Heat Mass Transf. 42, 3715–3718 (1999)

    Article  MATH  Google Scholar 

  11. Rashad A.M., Bakier A.Y.: MHD effects on non-Darcy forced convection boundary layer flow past a permeable wedge in porous medium with uniform heat flow. Nonlinear Anal. Model. Control 14(2), 249–261 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Teamah M.A., El-Maghlany W.M.: Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Int. J. Therm. Sci. 58, 130–142 (2012)

    Article  Google Scholar 

  13. Teamah M.A.: Numerical simulation of double diffusive natural convection in rectangular enclosure in the presences of magnetic field and heat source. Int. J. Therm. Sci. 47(3), 237–248 (2008)

    Article  Google Scholar 

  14. Teamah M.A., Elsafty A.F., Massoud E.Z.: Numerical simulation of double-diffusive natural convective flow in an inclined rectangular enclosure in the presence of magnetic field and heat source. Int. J. Therm. Sci. 52, 161–175 (2012)

    Article  Google Scholar 

  15. Qasim M.: Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink. Alex. Eng. J. 52(4), 571–575 (2013)

    Article  Google Scholar 

  16. Nadeem S., Haq R.U., Akbar N.S., Khan Z.H.: MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alex. Eng. J. 52(4), 577–582 (2013)

    Article  Google Scholar 

  17. Hussain S.H.: Magnetohydrodynamics opposing mixed convection in two-sided lid-driven differentially heated parallelogrammic cavity. J. Babylon Univ./Eng. Sci. 21(4), 1223–1242 (2013)

    Google Scholar 

  18. Misra S., Satheesh A., Mohan C.G., Padmanathan P.: The numerical simulation of double-diffusive laminar mixed convection flow in a porous cavity. WSEAS Trans. Heat Mass Transf. 8(4), 131–138 (2013)

    Google Scholar 

  19. Rahman M.M., Öztop H.F., Saidur R., Mekhilef S., Al-Salem K.: Finite element solution of MHD mixed convection in a channel with a fully or partially heated cavity. Comput. Fluids 79, 53–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shit G.C., Roy M.: Hydromagnetic effect on inclined peristaltic flow of a couple stress fluid. Alex. Eng. J. 53(4), 949–958 (2014)

    Article  Google Scholar 

  21. Kefayati G.H.R.: Mesoscopic simulation of magnetic field effect on double-diffusive mixed convection of shear-thinning fluids in a two sided lid driven cavity. J. Mol. Liq. 198, 413–429 (2014)

    Article  Google Scholar 

  22. Teamah M.A., El-Maghlany W.M.: Numerical simulation of double-diffusive mixed convective flow in rectangular enclosure with insulated moving lid. Int. J. Therm. Sci. 49(9), 1625–1638 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Satheesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, C.G., Satheesh, A. The Numerical Simulation of Double-Diffusive Mixed Convection Flow in a Lid-Driven Porous Cavity with Magnetohydrodynamic Effect. Arab J Sci Eng 41, 1867–1882 (2016). https://doi.org/10.1007/s13369-015-1998-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1998-x

Keywords

Navigation