Skip to main content
Log in

Nonlinear Finite Element Modeling of Composite Bridge Girders Strengthened with HM-CFRP Laminates

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Steel composite beams with reinforced concrete deck which are generally used in bridges can be strengthened by high modulus of carbon fiber-reinforced polymer materials due to cross-sectional losses and increased traffic loads. Experimental studies on strengthened beams composed of concrete, epoxy and fiber-reinforced materials are not economical with respect to time and cost. Parametric studies over experimentally verified numerical models can be a solution for research studies when time and cost are at concern. Numerical modeling of four different materials to behave in composite manner as one structural element can be achieved by employing nonlinear finite element modeling techniques. This paper discusses the steps of creating a nonlinear finite element model with explicit dynamic methods to achieve the bending behavior of composite steel beams strengthened by high modulus of carbon fiber-reinforced polymers. The finite element model is verified with the results of three real tests conducted by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schnerch, D.; Rizkalla, S.: Strengthening of scaled steel-concrete composite girders and steel monopole towers with CFRP. In: FRP Comp in Civil Eng. United Kingdom, pp. 90–100 (2004)

  2. Pric, A.; Moulds, R.J.: Repair and strengthening of structures using plate bonding. J. Constr. Build. Mater. (1991). doi:10.1016/0950-0618(91)90048-P

  3. Lunn, D.S.; Rizkalla, S., Ueda, T.: New FRP and adhesive materials for strengthening infill masonry structure. In: 6th Inter Conference on Advanced Composite Materials in Bridges and Structures (2012)

  4. Anıl, Ö.; Belgin, Ç.: Anchorages effects on CFRP-to-concrete bond-strength. J. Reinf. Plast. Compos. (2010). doi:10.1177/0731684408100259

  5. Kerboua, B.; Bedia, E.A.; Benmoussat, A.: Strengthening of damaged structures with bonded prestressed FRP composites plates: an improved theoretical solution. J. Compos. Mater. (2011) doi:10.1177/002199831038766

  6. Sumer Y., Aktas M.: Finite element modeling of existing cracks on pre-loaded reinforced concrete beams. Arab. J. Sci. Eng. 39(2), 2611–2619 (2014)

    Article  Google Scholar 

  7. Suna Z., Hua X., Sunb S., Chen H.: Energy-absorption enhancement in carbon-fiber aluminum-foam sandwich structures from short aramid-fiber interfacial reinforcement. Compos. Sci. Technol. 77, 14–21 (2013)

    Article  Google Scholar 

  8. Al-Saidy, AH.; Klaiber, A.H.; Wipf, T.J.: Repair of steel composite beams with carbon fiber reinforced polymer plates. J. Compos. Constr. (2004). doi:10.1061/(ASCE)1090-0268(2004)8:2(163)

  9. Gargia, J.A.; Chiminelli, A.; Lizaranzu, M.; Jimenez, M.A.: Characterization and material model definition of toughened adhesives for finite element analysis. Int. J. Adhes. (2010). doi:10.1016/j.ijadhadh.2010.12.006

  10. Tavakkolizadeh, M.; Saadatmaneshs, H.: Strengthening of steel-concrete composite girders using carbon fiber reinforced polymer sheets. J. Struct. Eng. (2003a). doi:10.1061/(ASCE)0733-9445(2003)129:1(30)

  11. Dawood, M.; Schnerch, D.; Sumner, E.A.; Rizkalla, S.: Strengthening steel bridges with new high modulus CFRP materials. In: International Conference on Bridge Maintenance Safety and Management. Portugal (2006)

  12. Dawood M., Sumner E.A., Rizkalla S.: Fundamental characteristics of new high modulus CFRP materials for strengthening steel bridges and structures. Adv. Eng. Struct. Mech. Constr. Solid Mech. Its Appl. 140, 215–226 (2006)

    Article  Google Scholar 

  13. Ghafoori, E.; Motavalli, M.: Innovative CFRP Pre-stressing system for strengthening of metallic structures. J. Compos. Constr. (2015). accepted. doi:10.1061/(ASCE)CC.1943-5614.0000559

  14. Ghafoori E., Motavalli M., Nussbaumer A., Herwig A., Prinz G., Fontana M.: Determination of minimum CFRP pre-stress levels for fatigue crack prevention in retrofitted metallic beams. Eng. Struct. 84, 29–41 (2015)

    Article  Google Scholar 

  15. Ghafoori E., Motavalli M., Zhao X.L., Nussbaumer A., Fontana M.: Fatigue design criterion for strengthening of metallic beams with bonded CFRP laminates. Eng. Struct. 101, 542–557 (2015)

    Article  Google Scholar 

  16. Ghafoori E., Motavalli M., Nussbaumer A., Herwig A., Prinz G.S., Fontana M.: Design criterion for fatigue strengthening of riveted beams in a 120-year-old railway metallic bridge using pre-stressed CFRP plates. Compos. Part B 68, 1–13 (2015)

    Article  Google Scholar 

  17. Dawood, M.; Rizkalla, S.: Bond and splice behavior of high modulus CFRP materials bonded to steel structures. In: Third International Conference on FRP Composites in Civil Engineering (2006)

  18. Rizkalla S., Dawood M., Schnerch D.: Development of a carbon fiber reinforced polymer system for strengthening steel structures. Compos. Part A 39(2), 388–397 (2008)

    Article  Google Scholar 

  19. Schnerch, D.; Stanford, K.; Sumner, E.; Rizkalla, S.: Bond behavior of CFRP strengthened steel bridges and structures. In: International Symposium on Bond Behaviour of FRP in Structures (2005)

  20. Agcakoca, E.: I-kesitli çelik-betonarme kompozit kirişlerin HM-CFRP ile onarım ve güçlendirilmesine yönelik metot geliştirilmesi, Doctoral thesis, Sakarya University (2012)

  21. Schnerch D., Dawood M., Rizkalla S., Sumner E.: Proposed design guidelines for strengthening of steel bridges with FRP materials. Constr. Build. Mater. 21(5), 1001–1010 (2007)

    Article  Google Scholar 

  22. Ghafoori E., Motavalli M.: Flexural and interfacial behavior of metallic beams strengthened by prestressed bonded plates. Compos. Struct. 101, 22–34 (2013)

    Article  Google Scholar 

  23. Ghafoori E., Motavalli M.: Lateral-torsional buckling of steel I-beams retrofitted by bonded and un-bonded CFRP laminates with different pre-stress levels: experimental and numerical study. Constr. Build. Mater. 76, 194–206 (2015)

    Article  Google Scholar 

  24. Ghafoori E., Motavalli M.: Normal, high and ultra-high modulus CFRP laminates for bonded and un-bonded strengthening of steel beams. Mater. Des. 67, 232–243 (2015)

    Article  Google Scholar 

  25. Zhao, G.; Li, A.: Numerical study of bonded steel and concrete composite beam. Comput. Struct. (2008). doi:10.1016/j.compstruc.2008.04.002

  26. ABAQUS. User’s Manual, Version 6.11. Hibbit, Karlsson & Sorensen, Inc., Pawtucket, Rhode Island, USA

  27. ABAQUS. Theory Manual, Version 6.11. Hibbit, Karlsson & Sorensen, Inc., Pawtucket, Rhode Island, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Sumer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aktas, M., Sumer, Y., Agcakoca, E. et al. Nonlinear Finite Element Modeling of Composite Bridge Girders Strengthened with HM-CFRP Laminates. Arab J Sci Eng 41, 3783–3791 (2016). https://doi.org/10.1007/s13369-015-1981-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1981-6

Keywords

Navigation