Skip to main content
Log in

Properties of Fibred Sand Concrete Sprayed by Wet-Mix Process

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents test results of mechanical properties of fibre-reinforced sand concrete (FRSC) formulated to be used in the sprayed wet-mix process, as a substitution to fibre-reinforced concrete (FRC) sprayed by dry-mix process. This process of application of concrete is suitable for diverse applications such underground support and slope stabilization. In FRC, formulated with aggregates up to 8 mm, both material and fibre rebounds are high (from 35 to 50 and 50 %, respectively); this results in economic implications and affects the performances of the mixture negatively. FRSC formulated with low dosage of cement, sand and high content of limestone filler, but without coarse aggregate, seems to be indicated to alleviate most of these problems, because of its fineness, high cohesiveness, high fluidity and better homogeneity. FRSC was investigated and compared with FRC, on the basis of fresh and hardened properties with special emphasis on rebound, compressive strength and drying shrinkage. Results of investigations showed many advantages of this new mixture (FRSC) when compared to FRC: reduction in material and fibre rebounds by approximately 50 %, relatively substantially thicker layers (9 vs 6 cm), good finishing surface, higher early-age compressive strength and long-term drying shrinkage close to that of FRC. On the other hand, the present study showed that a low amount of steel fibre (50 kg/m3) reduces the drying shrinkage of FRSC by approximately 16 %, while in the case of FRC, the influence is not significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franzen T.: ITA reports. Tunn. Undergr. Space Technol. 7(4), 383–391 (1991)

    Article  Google Scholar 

  2. Kabir, M.Z.; Nasab, M.H.: Mechanical properties of 3D wall panels under shear and flexural loading. In: 4th Structural Specialty Conference of the Canadian Society for Civil Engineering, Montréal, Quebec, Canada (2002)

  3. Austin S., Robins P.: Sprayed Concrete: Properties; Design and Application, pp. 44. Mc Graw-Hill, New York (1995)

    MATH  Google Scholar 

  4. Morgan D.R., Wolsiefer J.T.: Silica fume in shotcrete. Concr. Int. 15(4), 9–34 (1991)

    Google Scholar 

  5. Ansell A.: Investigation of shrinkage cracking in shotcrete on tunnel drains. Tunn. Undergr. Space Technol. 25, 607–613 (2010)

    Article  Google Scholar 

  6. Pfeuffer M., Kusterle W.: Rheology of rebound behaviour dry-mix shotcrete. Cem. Concr. Res. 31, 1619–1625 (2001)

    Article  Google Scholar 

  7. Malmgren L., Nordlund E., Rolund S.: Adhesion strength and shrinkage of shotcrete. Tunn. Undergr. Space Technol. 20, 33–48 (2005)

    Article  Google Scholar 

  8. Benaissa A., Kamen A., Chouicha K., Malab S.: Panneau 3D au béton de sable. Mater. Struct. 41, 1377–1391 (2008)

    Article  Google Scholar 

  9. Gérômey, S.: Evaluation des paramètres d’obtention de la qualité des bétons projetés utilisés dans des soutènements provisoires, des revêtements définitifs et des renforcements d’ouvrages. Institut National des Sciences Appliquées de Lyon. Thèse de doctorat (2003)

  10. Bouziani T., Bederina M., Hadjoudja M.: Effect of dune sand on the properties of flowing sand-concrete (FSC). Int. J. Concr. Struct. Mater. 6(1), 59–64 (2012)

    Google Scholar 

  11. Sablocrete, Synthèse du Projet National de Recherche et Développement, Bétons de sable, caractéristiques et pratiques d’utilisation, Presses de l’école Nationale des Ponts et Chaussées LCPC, Paris (1994)

  12. AFTES (Association Française des Tunnels et de l’Espace Souterrain). La technologie et la mise en œuvre du béton projeté renforcé de fibres. Tunnels et Ouvrages souterrains 126, 307–328 (1994)

  13. Hadjoudja, M.: Physico-mechanical and durability performance of dune sand concrete—influence of cure treatment and filler addition. Thèse de Magister. Université Atledji de Laghouat, Algérie (2001)

  14. Malmberg, B.: Steel reinforced concrete under free and restrained shrinkage. Fiberbetong, Nord forsks project kommitte för FRC-material, CBI in Swedish (1977)

  15. Austin S.A., Peaston C.H., Robins P.J.: Material and fibre losses with fibre reinforced sprayed concrete. Constr. Build. Mater. 11, 291–298 (1997)

    Article  Google Scholar 

  16. Rossi, P.: Les bétons de fibres métalliques. Presse de l’Ecole Nationale des Ponts et Chaussées (1998)

  17. Banthia N., Gupta R.: Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cem. Concr. Res. 36, 1263–1267 (2006)

    Article  Google Scholar 

  18. Yin S., Tuladhar R., Shi F., Combe M., Collister T., Sivakugan N.: Use of macro plastic fibres in concrete: a review. Constr. Build. Mater. 93, 180–188 (2015)

    Article  Google Scholar 

  19. Tayfun U.: Effect of fiber type and content on bleeding of steel fiber reinforced concrete. Constr. Build. Mater. 25, 766–772 (2011)

    Article  MATH  Google Scholar 

  20. Mehdipour I., Libre N.A., Shekarchi M., Khanjani M.: Effect of workability characteristics on the hardened performance of FRSCCMs. Constr. Build. Mater. 40, 611–621 (2013)

    Article  Google Scholar 

  21. Hassanpour M., Shafigh P., Mahmud H.B.: Lightweight aggregate concrete fiber reinforced—a review. Constr. Build. Mater. 37, 452–461 (2012)

    Article  Google Scholar 

  22. Austin, S.A.; Goodier, C.I.; Robins, P.J.: Low-volume wet-process sprayed concrete: pumping and spraying. RILEM Mater. Struct. 38, 229–237 (2005). http://hdl.handle.net/2134/3902

  23. Goodier, C.I.; Austin, S.A.; Robins, P.J.: Low-volume wet-process sprayed concrete: hardened properties. RILEM Mater. Struct. 41(1), 99–111 (2008). http://hdl.handle.net/2134/5038

  24. Leung C.K.Y., Lai R., Lee A.Y.F.: Properties of wet-mixed fibre reinforced shotcrete and fiber reinforced concrete with similar composition. Cem. Concr. Res. 35, 788–795 (2005)

    Article  MATH  Google Scholar 

  25. Bindiganavile V., Banthia N.: Fiber reinforced dry-mix shotcrete with metakaolin. Cem. Concr. Compos. 23, 503–514 (2001)

    Article  Google Scholar 

  26. Jolin M., Beaupré D., Mindess S.: Tests of characterise properties of fresh dry-mix shotcrete. Cem. Concr. Res. 29, 753–760 (1999)

    Article  Google Scholar 

  27. Zellers, R.C.: High cost of steel not the only reason for using fibres as shotcrete reinforcement. ASA Shotcrete, 16–18 (2004)

  28. AFTES recommendations on fibre-reinforced sprayed concrete technology and practice. Tunn. Undergr. Space Technol. 11(2), 205–214 (1996)

  29. Joudi-Bahri I., Lecomte A., Ben Ouezdou M., Ben Ouezdou M., Ben Ouezdou M.: Use of limestone sands and fillers in concrete without superplasticizer. Cem. Concr. Compos. 34, 771–780 (2012)

    Article  Google Scholar 

  30. Makhloufi Z., Kadri E.H., Bouhicha M., Benaissa A.: Resistance of limestone mortars with quaternary binders to sulfuric acid solution. Constr. Build. Mater. 26, 497–504 (2012)

    Article  Google Scholar 

  31. Wang, J.; Niu, D.; Zhang, Y.: Microstructure and mechanical properties of accelerated sprayed concrete. Mater. Struct. (2015). doi:10.1617/s11527-015-0589-3

  32. Gordon K.: Specialist pre-blended materials. In: Austin, S.A., Robins, P.J. (eds.) Sprayed Concrete: Properties, Design and Application, pp. 16–30. Whittles, Latheronwheel (1995)

    Google Scholar 

  33. Robins P.J.R. : Materials. In: Austin, S.A., Robins, P.J. (eds.) Sprayed Concrete: Properties, Design and Application, pp. 7–15. Whittles, Latheronwheel (1995)

    Google Scholar 

  34. Goodier, C.I.: Wet Process Sprayed Concrete and Mortar for Repair. PhD Doctoral thesis, Loughborough University, 2001, http://hdl.handle.net/2134/7468

  35. Austin, S.A.; Robins, P.J.; Goodier, C.I.: The performance of hardened wet-process sprayed mortars. Mag. Concr. Res. 52(3), 195–208. http://hdl.handle.net/2134/5169 (2000)

  36. Hills D.L.: Site-produced sprayed concrete. Concrete 16(12), 44–50 (1982)

    Google Scholar 

  37. Benaissa A., Morlier P., Viguier C.: Microstructure du béton de sable. Cem. Concr. Res. 23(3), 663–674 (1993)

    Article  Google Scholar 

  38. Chopin, D.; Francy, O.; Lebourgeois, S.; Rougeau, P.: Creep and shrinkage of heat-cured self-compacting concrete (SCC). In: 3rd International Symposium on Self-Compacting Concrete, pp. 17–20. Reykjavik, Iceland (2003)

  39. Malab S., Benaissa A., Boudraa S.E., Aggoun S.: Drying kinetics of self-compacting concrete. Turk. J. Eng. Environ. Sci. 33, 135–145 (2009)

    Google Scholar 

  40. Baroghel-Bouny, V.; Ammouche, A.; Hornain, H.; Gawsewitch, J.: Vieillissement des bétons en milieu naturel. Une expérimentation pour le XXIe siècle. Bulletin des Laboratoires des Ponts et Chaussées, 228, Septembre–Octobre, 4328, 71–86 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imene Benaissa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benaissa, I., Nasser, B., Aggoun, S. et al. Properties of Fibred Sand Concrete Sprayed by Wet-Mix Process. Arab J Sci Eng 40, 2289–2299 (2015). https://doi.org/10.1007/s13369-015-1753-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1753-3

Keywords

Navigation