Skip to main content
Log in

Equal-Channel Angular Pressing of Thin-Walled Copper Tube

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

During the last decade, materials with high strength-to-weight ratio have been in demand for industrial usage. Various severe plastic deformation methods such as SE process and HPTT process for tube-shaped specimens have been proposed and experimented. The common difficulty among these SPD techniques for producing tube-shaped specimens is theirs expensive and complicated setups. It is ideal to introduce a new method based on the simplicity of setup and low cost to produce thin-walled (R/t > 10, where R is the radius and t is the tube wall thickness) UFGed tube-shape component. Based on this conception, a new technique has been proposed and experimented. In this work, thin-walled copper tube specimens with 1 mm wall thickness and 23 mm diameter have been successfully ECAPed up to four passes through two different fundamental routes (B C and C) with the die channel angle of 90° using flexible polyurethane rubber pad. Hardness measurements on both annealed and ECAPed tubes show that 90 % increase in hardness value and also 200 % reduction in the grain size were achieved after four passes. Furthermore, the thickness measurement taken from several locations of the tube indicated that the process did not change the dimension of the deformed specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HDF:

Hardness distribution factor

HV i :

Vickers hardness magnitude at each point

HVave :

Average magnitude of Vickers hardness measurements

n :

The number of data

References

  1. Valiev R.Z., Langdon T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881–981 (2006)

    Article  Google Scholar 

  2. Furukawa M., Iwahashi Y., Horita Z., Nemoto M., Langdon T.G.: The shearing characteristics associated with equal-channel angular pressing. Mater. Sci. Eng. A 257, 328–332 (1998)

    Article  Google Scholar 

  3. Aida T., Matsuki K., Horita Z., Langdon T.G.: Estimating the equivalent strain in equal channel angular pressing. Scr. mater. 44, 575–579 (2001)

    Article  Google Scholar 

  4. Ekici E., Samtaş G., Gülesin M.: Experimental and statistical investigation of the machinability of Al-10 % SiC MMC Produced by Hot Pressing Method. AJSE 39(04), 3289–3298 (2014)

    Google Scholar 

  5. Mahmudi R., Alizadeh R., Geranmayeh A.R.: Enhanced superplasticity in equal-channel angularly pressed Sn-5Sb alloy. Scr. Mater. 64, 521–524 (2011)

    Article  Google Scholar 

  6. Kim W.J., An C.W., Kim Y.S., Hong S.I.: Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing. Scr. Mater. 47, 39–44 (2002)

    Article  Google Scholar 

  7. Zhilyaev A.P., Langdon T.G.: Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater. Sci. 53, 893–979 (2008)

    Article  Google Scholar 

  8. Beygelzimer Y., Varyukhin V., Synkov S., Orlov D.: Useful properties of twist extrusion. Mater. Sci. Eng. A 503, 14–17 (2009)

    Article  Google Scholar 

  9. Fatemi-Varzaneh S.M., Zarei-Hanzaki A.: Accumulative back extrusion (ABE) processing as a novel bulk deformation Method. Mater. Sci. Eng. A 504, 104–106 (2009)

    Article  MATH  Google Scholar 

  10. Biswas S., Suwas S.: Evolution of sub-micron grain size and weak texture in magnesium alloy Mg–3Al–0.4Mn by a modified multi-axial forging process. Scr. Mater. 66, 89–92 (2012)

    Article  Google Scholar 

  11. Chen Y.J., Wang Q.D., Roven H.J., Liu M.P., Karlsen M., Yu Y.D., Hjelen J.: Network-shaped fine-grained microstructure and high ductility of magnesium alloy fabricated by cyclic extrusion compression. Scr. Mater. 58, 311–314 (2008)

    Article  Google Scholar 

  12. Lee J.C., Seok H.K., Suh J.Y.: Microstructural evolutions of the Al strip prepared by cold rolling and continuous equal channel angular pressing. Acta Mater. 50, 4005–4019 (2002)

    Article  Google Scholar 

  13. Saito Y., Tsuji N., Utsunomiya H., Sakai T., Hong R.G.: Ultra-fine grained bulk aluminum produced by Accumulative Roll-Bonding (ARB) process. Scr. Mater. 39, 1221–1227 (1998)

    Article  Google Scholar 

  14. Sajadi A., Ebrahimi M., Djavanroodi F.: Experimental and numerical investigation of Al properties fabricated by CGP process. Mater. Sci. Eng. A 552, 97–103 (2012)

    Article  Google Scholar 

  15. Neugebauer R., Glass R., Kolbe M., Hoffmann M.: Optimization of processing routes for cross rolling and spin extrusion. J. Mater. Process. Technol. 125(126), 856–862 (2002)

    Article  Google Scholar 

  16. Pougis A., To’th L.S., Bouaziz O., Fundenberger J.J., Barbier D., Arruffat R.: Stress and strain gradients in high-pressure tube twisting. Scr. Mater. 66, 773–776 (2012)

    Article  Google Scholar 

  17. Mohebbi M.S., Akbarzadeh A.: Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes. Mater. Sci. Eng. A 528, 180–188 (2010)

    Article  Google Scholar 

  18. Faraji G., Mashhadi M.M., Kim H.S.: Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes. Mater. Lett. 65, 3009–3012 (2011)

    Article  Google Scholar 

  19. Ma A., Nishida Y., Suzuki K., Shigematsu I., Saito N.: Characteristics of plastic deformation by rotary-die equal-channel angular pressing. Scr. Mater. 52, 433–437 (2005)

    Article  Google Scholar 

  20. Purcek G., Saray O., Kul O., Karaman I., Yapici G.G., Haouaoui M., Maier H.J.: Mechanical and wear properties of ultrafine-grained pure Ti produced by multi-pass equal-channel angular extrusion. Mater. Sci. Eng. A 517, 97–104 (2009)

    Article  Google Scholar 

  21. Nagasekhar A.V., Kim H.S.: Plastic deformation characteristics of cross-equal channel angular pressing. Comput. Mater. Sci. 43, 1069–1073 (2008)

    Article  Google Scholar 

  22. Azushima A., Aoki K.: Properties of ultrafine-grained steel by repeated shear deformation of side extrusion process. Mater. Sci. Eng. A 337, 45–49 (2002)

    Article  Google Scholar 

  23. Djavanroodi F., Daneshtalab M., Ebrahimi M.: A novel technique to increase strain distribution homogeneity for ECAPed Materials. Mater. Sci. Eng. A 535, 115–121 (2012)

    Article  Google Scholar 

  24. Neugebauer, R.; Glass, R.; Hoffmann, M.; Putz, M.: Spin extrusion—a new partial forming technology based on 7 NC-axes machining. CIRP Ann. 54(1), 241–244 (2005)

  25. To’ th L.S., Arzaghi M., Fundenberger J.J., Beausir B., Bouaziz O., Arruffat-Massion R.: Severe plastic deformation of metals by high-pressure tube twisting. Scr. Mater. 60, 175–177 (2009)

    Article  Google Scholar 

  26. Mohebbi M.S., Akbarzadeh A.: A novel spin-bonding process for manufacturing multilayered clad tubes. J. Mater. Process. Technol. 210, 510–517 (2010)

    Article  Google Scholar 

  27. Nagasekhar A.V., Chakkingal U., Venugopal P.: Candidature of equal channel angular pressing for processing of tubular commercial purity-titanium. J. Mater. Process. Technol. 173, 53–60 (2006)

    Article  Google Scholar 

  28. Zangiabadi A., Kazeminezhad M.: Development of a novel severe plastic deformation method for tubular materials: Tube Channel Pressing (TCP). Mater. Sci. Eng. A 528, 5066–5072 (2011)

    Article  Google Scholar 

  29. Faraji G., Mashhadi M.M., Kim H.S.: Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes. Mater. Lett. 65, 3009–3012 (2011)

    Article  Google Scholar 

  30. Mesbaha M., Faraji G., Bushroaa A.R.: Characterization of nanostructured pure aluminum tubes produced by tubular channel angular pressing (TCAP). Mater. Sci. Eng. A 590, 289–294 (2014)

    Article  Google Scholar 

  31. Djavanroodi F., Ebrahimi M., Rajabifar B., Akramizadeh S.: Fatigue design factors for ECAPed materials. Mater. Sci. Eng. A 528, 745–750 (2010)

    Article  Google Scholar 

  32. Rezvani M.J., Damghani Nouri M.: Axial crumpling of aluminum frusta tubes with induced axisymmetric folding patterns. AJSE 39(03), 2179–2190 (2014)

    MATH  Google Scholar 

  33. Djavanroodi, F.; Zolfaghari, A.A.; Ebrahimi, M.; Nikbin, K.M.: Equal channel angular pressing of tubular samples. Acta Metall. Sin. (Engl. Lett.) 26(5), 574–580 (2013)

  34. Djavanroodi, F.; Zolfaghari, A.A.; Ebrahimi, M.; Nikbin, K.M.: Route effect on equal channel angular pressing of copper tube. Acta Metall. Sin. (Engl. Lett.) (2014). doi:10.1007/s40195-014-0028-4

  35. Djavanroodi, F.; Zolfaghari, A.A.; Ebrahimi, M.: Experimental investigation of three different tube equal channel angular pressing techniques. Kovove Mater. 53, 27–34 (2015). doi:10.4149/km 2015 1 27

  36. Stolyarov V.V., Zhu Y.T., Alexandrov I.V., Lowe T.C., Valiev R.Z.: Influence of ECAP routes on the microstructure and properties of pure Ti. Mater. Sci. Eng. A 299, 59–67 (2001)

    Article  Google Scholar 

  37. Xu S., Zhao G., Luan Y., Guan Y.: Numerical studies on processing routes and deformation mechanism of multi-pass equal channel angular pressing processes. J. Mater. Process. Technol. 176, 251–259 (2006). doi:10.1016/j.jmatprotec.2006.03.167

    Article  Google Scholar 

  38. Tong, L.B.; Zheng, M.Y.; Hu, X.S.; Wu, K.; Xu, S.W.; Kamado, S.; Kojima, Y.: Influence of ECAP routes on microstructure and mechanical properties of Mg–Zn–Ca alloy. Mater. Sci. Eng. A (2010). doi:10.1016/j.msea.2010.03.062

  39. Djavanroodi F., Ebrahimi M.: Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Mater. Sci. Eng. A 527, 1230–1235 (2010)

    Article  Google Scholar 

  40. ASM Handbook, Vol. 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM (1990). ISBN: 978-0-87170-378-1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Djavanroodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mufadi, F., Djavanroodi, F. Equal-Channel Angular Pressing of Thin-Walled Copper Tube. Arab J Sci Eng 40, 2785–2794 (2015). https://doi.org/10.1007/s13369-015-1750-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1750-6

Keywords

Navigation