Skip to main content
Log in

An Efficient ANFIS-Based PI Controller for Maximum Power Point Tracking of PV Systems

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, an efficient adaptive neuro-fuzzy inference system (ANFIS)-based PI controller for maximum power point tracking (MPPT) of photovoltaic (PV) systems is proposed. The proposed ANFIS-based MPPT controller has the capacity to track the optimum point under the rapidly changing irradiation conditions with less fluctuations in steady state. The training data of the proposed controller are extracted from a precise PV model developed. The performance of the proposed controller is compared with the conventional incremental conductance method. Finally, the proposed ANFIS-based MPPT controller has been implemented experimentally using real-time digital simulator (RTDS) to simulate a PV system in real time, while the proposed ANFIS-based controller is implemented on dSPACE 1104 controller. Simulation and experimental results show that the proposed ANFIS-based MPPT controller has fast and accurate dynamic response with less fluctuations in steady state. In addition, its performance is superior as compared to the conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Global Market Outlook For Photovoltaics Until 2016 (EPIA) Industry Association, European Photovoltaic. 2012. [Online]. http://www.epia.org/fileadmin/user_upload/Publications/Global-Market-Outlook-2016.pdf

  2. Subudhi B., Pradhan R.: A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans. Sustain. Energy 4(1), 89–98 (2013)

    Article  Google Scholar 

  3. Reisi A. Reza, Moradi M. Hassan, Jamasb S.: Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review. Renew. Sustain. Energy Rev. 19, 433–443 (2013)

    Article  Google Scholar 

  4. Esram T., Chapman P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)

    Article  Google Scholar 

  5. Abdelsalam A.K., Massoud A.M., Ahmed S., Enjeti P.N.: High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Trans. Power Electron. 26(4), 1010–1021 (2011)

    Article  Google Scholar 

  6. Kjær S.B.: Evaluation of the ‘hill climbing’ and the ‘incremental conductance’ maximum power point trackers for photovoltaic power systems. IEEE Trans. Energy Convers. 27(4), 922–929 (2012)

    Article  Google Scholar 

  7. Safari A., Mekhilef S.: Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cuk converter. IEEE Trans. Ind. Electron. 58(4), 1154–1161 (2011)

    Article  Google Scholar 

  8. Worku, Muhammed. Y.; Abido, M.A.: Real-time implementation of grid-connected PV system with decoupled P-Q controllers. 22nd IEEE Mediterranean Conference of Control and Automation (MED). 841–846 (2014)

  9. Sera D., Mathe L., Kerekes T., Spataru S.V., Teodorescu R: On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE J. Photovolt. 3(3), 1070–1078 (2013)

    Article  Google Scholar 

  10. Femia N., Petrone G., Spagnuolo G., Vitelli M.: Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron. 20(4), 963–973 (2005)

    Article  Google Scholar 

  11. Elgendy M.A., Zahawi B., Atkinson D.J.: Assessment of the incremental conductance maximum power point tracking algorithm. IEEE Trans. Sustain. Energy 4(1), 108–117 (2013)

    Article  Google Scholar 

  12. Sera D., Teodorescu R., Hantschel J., Knoll M.: Optimized maximum power point tracker for fast-changing environmental conditions. IEEE Trans. Ind. Electron. 55(7), 2629–2637 (2008)

    Article  Google Scholar 

  13. Lee K.-J., Kim R.-Y.: An adaptive maximum power point tracking scheme based on a variable scaling factor for photovoltaic systems. IEEE Trans. Energy Convers. 27(4), 1002–1008 (2012)

    Article  Google Scholar 

  14. Liu F., Duan S., Liu F., Liu B., Kang Y.: A variable step size INC MPPT method for pv systems. IEEE Trans. Ind. Electron. 55(7), 2622–2628 (2008)

    Article  Google Scholar 

  15. Zhang F., Thanapalan K., Procter A., Carr S., Maddy J.: Adaptive hybrid maximum power point tracking method for a photovoltaic system. IEEE Trans. Energy Convers. 28(2), 353–360 (2013)

    Article  Google Scholar 

  16. Sera D., Mathe L., Kerekes T., Spataru S.V., Teodorescu R.: On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE J. Photovolt. 3(3), 1070–1078 (2013)

    Article  Google Scholar 

  17. Masoum M.A.S., Dehbonei H., Fuchs E.F.: Theoretical and experimental analyses of photovoltaic systems with voltageand current-based maximum power-point tracking. IEEE Trans. Energy Convers. 17(4), 514–522 (2002)

    Article  Google Scholar 

  18. Mellit A., Kalogirou S.a.: Artificial intelligence techniques for photovoltaic applications: a review. Prog. Energy Combust. Sci. 34(5), 574–632 (2008)

    Article  Google Scholar 

  19. Ishaque K., Salam Z., Amjad M., Mekhilef S.: An improved particle swarm optimization (PSO)–based MPPT for PV with reduced steady-state oscillation. IEEE Trans. Power Electron. 27(8), 3627–3638 (2012)

    Article  Google Scholar 

  20. Alajmi B.N., Ahmed K.H., Finney S.J., Williams B.W.: Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system. IEEE Trans. Power Electron. 26(4), 1022–1030 (2011)

    Article  Google Scholar 

  21. Sheraz, M.; Abido, M.A.: An efficient MPPT controller using differential evolution and neural network. IEEE Int. Conf. Power Energy (PECon). 378–383, (2012)

  22. Jang J.-S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  23. Aldobhani, A.M.S.; John, R.: Maximum power point tracking of PV system using ANFIS prediction and fuzzy logic tracking. Int. MultiConference Eng. Comput. Sci. (IMECS). 2, 19–21.(2008)

  24. Abu-Rub H., Iqbal A., Moin Ahmed S., Peng F.Z., Li Y., Baoming G.: Quasi-Z-source inverter-based photovoltaic generation system with maximum power tracking control using ANFIS. IEEE Trans. Sustain. Energy 4(1), 11–20 (2013)

    Article  Google Scholar 

  25. Afghoul, H.; Krim, F.; Chikouche, D.: Increase the photovoltaic conversion efficiency using neuro-fuzzy control applied to MPPT. Renew. Sustain. Energy Conf. (IRSEC). 348–353 (2013)

  26. Khaehintung, N.; Sirisuk P.; Kurutach, W.: A novel ANFIS controller for maximum power point tracking in photovoltaic systems. The Fifth International Conference on Power Electronics and Drive Systems, PEDS. 833–836 (2003)

  27. Mayssa, F.; Sbita, L.: Advanced ANFIS-MPPT control algorithm for sunshine photovoltaic pumping systems. First International Conference Renewable Energies and Vehicular Technology (REVET). 167–172 (2012)

  28. Tarek, B.; Said, D.; Benbouzid, M.E.H.: Maximum power point tracking control for photovoltaic system using adaptive neuro- fuzzy “ANFIS”. 8th International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER). 1–7 (2013)

  29. Iqbal, A.; Abu-Rub, H.; Ahmed, S.M.: Adaptive neuro-fuzzy inference system based maximum power point tracking of a solar PV module. IEEE International Energy Conference and Exhibition (EnergyCon). 51–56 (2010)

  30. Kharb Ravinder Kumar, Shimi S.L., Chatterji S., Ansari Md. Fahim: Modeling of solar PV module and maximum power point tracking using ANFIS. Renew. Sustain. Energy Rev. 33, 602–612 (2014)

    Article  Google Scholar 

  31. De Soto, W.; Klein, S.a.; Beckman, W.a.: Improvement and validation of a model for photovoltaic array performance. Sol. Energy 80(1), 78–88 (2006)

  32. Chatterjee A., Keyhani A., Kapoor D.: Identification of photovoltaic source models. IEEE Trans. Energy Convers. 26(3), 883–889 (2011)

    Article  Google Scholar 

  33. Jang J.-S.R.: Neuro-fuzzy modeling and control. Proc. IEEE 83(3), 378–406 (1995)

    Article  Google Scholar 

  34. Siddiqui M.U., Abido M.A.: Parameter estimation for five- and seven-parameter photovoltaic electrical models using evolutionary algorithms. Appl. Soft Comput. 13(12), 4608–4621 (2013)

    Article  Google Scholar 

  35. Khalid M. Sheraz, Abido M.A.: A novel and accurate photovoltaic simulator based on seven-parameter model. Electric Power Syst. Res. 116, 243–251 (2014)

    Article  Google Scholar 

  36. User’s Manual; DSpace DS1104. www.dspace.com/en/pub/home/products/hw/singbord/ds1104.cfm

  37. User’s Manual; Real Time Digital Simulator (RTDS). http://www.rtds.com/index/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed Y. Worku.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abido, M.A., Khalid, M.S. & Worku, M.Y. An Efficient ANFIS-Based PI Controller for Maximum Power Point Tracking of PV Systems. Arab J Sci Eng 40, 2641–2651 (2015). https://doi.org/10.1007/s13369-015-1749-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1749-z

Keywords

Navigation