Skip to main content

Synthesis and Antibacterial Activity of CuO Nanoparticles Suspension Induced by Laser Ablation in Liquid

Abstract

In the present study, copper oxide (CuO) colloidal nanoparticles (NPs) were synthesized using laser ablation of copper pellet immersed in deionized water. Pulsed Nd: YAG laser was used to irradiate the targets at different laser energies and various ablation times. NP suspensions were characterized by UV–Vis spectroscopy, XRD, and TEM. The absorption spectrum exhibited a peak at ~275 nm and another peak with low intensity at ~645 nm. The XRD pattern of the NPs proved the presence of (–111) and (112) planes assigned to the CuO phase. The TEM images showed nearly spherical shape nanoparticles CuO NPs with size of 3–40 nm. The antibacterial activity of CuO NPs was first carried out against four types of bacteria: Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris and Staphylococcus aureus, by liquid medium method. CuO NPs showed the highest antibacterial activity against E. coli at the highest concentration(1000 μg mL−1). CuO NPs and amoxicillin had a synergistic effect on inhibiting E. coli and S. aureus growth; this effect was also tested using the well diffusion method. In this method, CuO NPs at a concentration of 1000 μg mL−1 along with amoxicillin showed the inhibition zone against E. coli (26.0 ± 1.00 mm), as well as complete inhibition of bacteria against S. aureus.

This is a preview of subscription content, access via your institution.

References

  1. Tilaki R.M., Zad A.I., Mahdavi S.M.: Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids. Appl. Phys. A 88, 415–419 (2007)

    Article  Google Scholar 

  2. Ren G., Hu D., Cheng E.W.C., Vargas-Reus M.A., Reip P., Allaker R.P.: Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 33, 587–590 (2009)

    Article  Google Scholar 

  3. Tarasenko N.V., Burakov V.S., Butsen A.V.: Laser ablation plasmas in liquids for fabrication of nanosize particles. Publ. Astron. Obs. Belgrade 82, 201–211 (2007)

    Google Scholar 

  4. Donnelly T., Krishnamurthy S., Carney K., McEvoy N., Lunney J.G.: Pulsed laser deposition of nanoparticle films of Au. Appl. Surf. Sci. 254, 1303–1306 (2007)

    Article  Google Scholar 

  5. Mallick P., Sahu S.: Structure, microstructure and optical absorption analysis of CuO nanoparticles synthesized by sol–gel route. Nanosci. Nanotechnol. 2, 71–74 (2012)

    Article  Google Scholar 

  6. Wang W., Lenggoro I.W., Terashi Y., Kim T.O., Okuyama K.: One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors. Mater. Sci. Eng. 123, 194–202 (2005)

    Article  Google Scholar 

  7. Zeng H., Du X., Singh S.C., Kulinich S.A., Yang S., He J., Cai W.: Nanomaterials via laser ablation/irradiation in liquid: a review. Adv. Funct. Mater. 22(7), 1333–1353 (2012)

    Article  Google Scholar 

  8. Yang G.W.: Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog. Mater. Sci. 52, 648–698 (2007)

    Article  Google Scholar 

  9. Nath A., Khare A.: Size induced structural modifications in copper oxide nanoparticles synthesized via laser ablation in liquids. J. Appl. Phys. 110, 043111–043116 (2011)

    Article  Google Scholar 

  10. James D., Harry B., Jay R., Astrid M.: Co3O4 nanoparticle water-oxidation catalysts made by pulsed-laser ablation in liquids. ACS Catal. 3, 1–5 (2013)

    Article  MATH  Google Scholar 

  11. Niu K.Y., Yang J., Kulinich S.A., Sun J., Li H., Du X.W.: Morphology control of nanostructures via surface reaction of metal nanodroplets. J. Am. Chem. Soc. 132, 9814–9819 (2010)

    Article  Google Scholar 

  12. Acacia N., Barreca F., Barletta E., Spadaro D., Curro G., Neria F.: Laser ablation synthesis of indium oxide nanoparticles in water. Appl. Surf. Sci. 256, 6918–6922 (2010)

    Article  Google Scholar 

  13. Hoseini, A.; Shahtahmasebi, N.; Rezaee-Roknabadi, M.; Mashreghi, M.; Bagheri-Mohagheghi, M.M.; Azhir, E.; Madahi, P.: Fabrication of CuO:Fe Nanoparticles by sol–gel method and study and structural and antibacterial properties. In: 2nd Conf. Appl. Nanotechnol. Sci. Eng. Med. (NTC2011), pp. 1–2 (2011)

  14. Jeyaraman R., Kadarkaraithangam J., Arumugam M., Govindasamy R., Abdul A.: Synthesis and antimicrobial activity of copper nanoparticles. Mater. Lett. 71, 114–116 (2011)

    Google Scholar 

  15. Emami-Karvani Z., Chehrazi P.: Antibacterial activity of ZnO nanoparticle on grampositive and gram-negative bacteria. Afr. J. Microbiol. Res. 5, 1368–1373 (2011)

    Google Scholar 

  16. Ravishankar R.V., Jamuna B.A.: Nanoparticles and their potential application as antimicrobials, science against microbial pathogens. Commun. Curr. Res. Technol. Adv. 1, 197–209 (2011)

    Google Scholar 

  17. Azam A., Ahmed A.S., Oves M., Khan M.S., Memic A.: Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int. J. Nanomed. 7, 3527–3535 (2012)

    Article  Google Scholar 

  18. Swarnkar R.K., Singh S.C., Gopal R.: Effect of aging on copper nanoparticles synthesized by pulsed laser ablation in water. Bull. Mater. Sci. 34, 1363–1369 (2011)

    Article  Google Scholar 

  19. Mahdy S.A., Raheed Q.J., Kalaichelvan P.T.: Antimicrobial activity of zero-valent iron nanoparticles. Int. J. Mod. Eng. Res. 2, 578–581 (2012)

    Google Scholar 

  20. Sima C., Viespe C., Grigoriu C., Prodan G., Ciupina V.: Production of oxide nanoparticles by pulsed laser ablation. J. Optoelectron. Adv. Mater. 10, 2631–2636 (2008)

    Google Scholar 

  21. Mahfouz R., Aires F.J., Brenier A., Jacquier B., Bertolini J.C.: Synthesis and physico-chemical characteristics of nanosized particles produced by laser ablation of a nickel target in water. Appl. Surf. Sci. 254, 5181–5190 (2008)

    Article  Google Scholar 

  22. Amikura K., Kimura T., Hamada M., Yokoyama N., Miyazaki J., Yamada Y.: Copper oxide particles produced by laser ablation in water. Appl. Surf. Sci. 254, 6976–6982 (2008)

    Article  Google Scholar 

  23. Sondi I., Salopek-Sondi B.: Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci. 275, 177–182 (2004)

    Article  Google Scholar 

  24. Jadhav S., Gaikwad S., Nimse M., Rajbhoj A.: Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. J. Clust. Sci. 22, 121–129 (2011)

    Article  Google Scholar 

  25. Chang Y., Zhang M., Xia L., Zhang J., Xing G.: The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5, 2850–2871 (2012)

    Article  Google Scholar 

  26. Rajawat S., Qureshi M.S.: Comparative study on bactericidal effect of silver nanoparticles, synthesized using green technology, in combination with antibiotics on Salmonella typhi. J. Biomater. Nanobiotechnol. 3, 480–485 (2012)

    Article  Google Scholar 

  27. Tiwari D.K., Behari J., Sen P.: Application of nanoparticles in waste water treatment. World Appl. Sci. J. 3, 417–433 (2008)

    Google Scholar 

  28. Savi G.D., Trombin A.C., Generoso J.S., Barichello T., Possato J.C., Ronconi J.V., Paula M.M.: Antibacterial activity of gold and silver nanoparticles impregnated with antimicrobial agents. Revista Saúde e Pesquisa 6, 227–235 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan M. Sulaiman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khashan, K.S., Sulaiman, G.M. & Abdulameer, F.A. Synthesis and Antibacterial Activity of CuO Nanoparticles Suspension Induced by Laser Ablation in Liquid. Arab J Sci Eng 41, 301–310 (2016). https://doi.org/10.1007/s13369-015-1733-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1733-7

Keywords

  • CuO
  • Nanoparticles
  • PLAL
  • X-ray diffraction
  • TEM
  • Antibacterial activity