Skip to main content
Log in

A Fuzzy System Methodology for Concrete Mixture Design Considering Maximum Packing Density and Minimum Cement Content

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Concrete mix proportioning could be referred to the process of determining the quantities of concrete ingredients using local materials to achieve specific characteristics of the concrete. Among the most important parameters affecting the performance of concrete are the packing density and the grading curve of the aggregates. Better packing of aggregates improves the strength, durability, elastic modulus and creep of the concrete. Accordingly, by increasing packing density and decreasing cement content, environment pollution will decrease. The present study proposes a fuzzy-based technique for mix proportioning of normal concrete that increases packing density and decreases cement content. The proposed system utilizes four sub-fuzzy systems to quantify the target compressive strength, water-to-cement ratio, ideal grading curve and free water of the concrete. The results from the proposed fuzzy systems were compared with those obtained from the concrete mix proportioned by field experts. The comparison showed strong agreement between the results for the fuzzy and expert-proportioned mixtures. The proposed system used less cement and had a higher packing density than was found using other mixture proportioning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ACI 211.1-91.: Standard practice for selecting proportions for normal heavyweight, and mass concrete. ACI Manual of Concrete Practice, American Concrete Institute, Detroit, Mich (1997)

  2. Abolpour B., Abolpour B., Abolpour R., Bakhshi H.: Estimation of concrete compressive strength by a fuzzy logic model. Res. Chem. Intermediat. 39(2), 707–719 (2013). doi:10.1007/s11164-012-0591-0

    Article  Google Scholar 

  3. Nataraja M.C., Jayaram M.A., Ravikumar C.N.: A fuzzy-neuro model for normal concrete mix design. Eng. Letter. 13(2), 13–28 (2006)

    Google Scholar 

  4. Akhras G., Foo H.C.: Aknowledge-based system for selecting proportions for normal concrete. Exp. Syst. Appl. 7(2), 323–335 (1994). doi:10.1016/0957-4174(94)90047-7

    Article  Google Scholar 

  5. Mohd M.F., Islam M.N., Basri I.H.: An expert system for mix design of high performance concrete. Adv. Eng. Softw. 36, 325–337 (2005). doi:10.1016/j.advengsoft.2004.10.008

    Article  MATH  Google Scholar 

  6. Jang-Ho J.K, Hung D.P., Byung-Yun K., Jung-Wook C., Tong-Seok H.: Development of satisfaction curves to evaluate concrete mix design performance using a Bayesian probabilistic method. Cons. Build. Mate. 27(1), 578–584 (2012). doi:10.1016/j.conbuildmat.2011.07.005

    Article  Google Scholar 

  7. Tesfamariam S., Najjaran H.: Adaptive network-fuzzy inferencing to estimate concrete strength using mix design. ASCE J. Mater. Civ. Eng. 19(7), 550–560 (2007). doi:10.1061/(ASCE)0899-1561(2007)19:7(550)

    Article  Google Scholar 

  8. Simon, M.J.: Concrete mixture optimization using statistical methods: final report. FHWA office of infrastructure research and development, FHWA-RD-03-060 (2003)

  9. Zadeh L.A.: Fuzzy sets. Inform. Control. 8, 38–53 (1967)

    MathSciNet  Google Scholar 

  10. Tanyildizi H.: Fuzzy logic model for prediction of mechanical properties of lightweight concrete exposed to high temperature. Mater Design 30, 2205–2210 (2012). doi:10.1016/j.matdes.2008.08.030

    Article  Google Scholar 

  11. Akkurt S., Ozdemir S., Tayfur G., Akyol B.: The use of GA-ANNS in the modelling of compressive strength of cement mortar. Ceme. Conc. Res. 33, 973–979 (2003). doi:10.1016/S0008-8846(03)00006-1

    Article  Google Scholar 

  12. Sardemir M., Topcu I.B., Ozcould F., Severcould M.H.: Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic. Constr. Build. Mater. 23, 1279–1286 (2009). doi:10.1016/j.conbuildmat.2008.07.021

    Article  Google Scholar 

  13. Topcu I.B., Serdemir M.: Prediction of rubberized concrete properties using artificial neural network and fuzzy logic. Constr. Build. Mater. 22, 532–540 (2008). doi:10.1016/j.conbuildmat.2006.11.007

    Article  Google Scholar 

  14. Mamdani E.H.: Application of fuzzy algorithms for control of simple dynamic plants. Proc. IEEE 121, 1585–1588 (1976). doi:10.1049/piee.1974.0328

    Google Scholar 

  15. Ozcan F., Atis C.D., Karahan O., Uncuoglu E., Tanyildizi H.: Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Adv. Eng. Softw. 40, 856–863 (2009). doi:10.1016/j.advengsoft.2009.01.005

    Article  Google Scholar 

  16. Kala Z.: Influence of partial safety factors on design reliability of steel structures—probability and fuzzy probability assessments. J. Civil Eng. Manage. 13(4), 291–296 (2007). doi:10.1080/13923730.2007.9636449

    Google Scholar 

  17. Kala Z.: Fuzzy probability analysis of the fatigue resistance of steel structural members under bending. J. Civil Eng. Manage. 14(1), 67–72 (2008). doi:10.3846/1392-3730.2008.14.67-72

    Article  Google Scholar 

  18. Saltan M., Saltan S., Sahiner A.: Fuzzy logic modeling of deflection behavior against dynamic loading in flexible pavements. Constr. Build. Mater. 21, 1406–1414 (2007). doi:10.1016/j.conbuildmat.2006.07.004

    Article  Google Scholar 

  19. Anoop M.B., Rao K.B., Rao T.V.S.R.A.: Application of fuzzy sets for estimating ser- vice life of reinforced concrete structural members in corrosive environments. Eng. Struct. 24(9), 1229–1242 (2002). doi:10.1016/S0141-0296(02)00060-3

    Article  Google Scholar 

  20. Sobhani J., Ramezanianpour A.A.: Service life of the reinforced concrete bridge deck in corrosive environments: a soft computing system. App. Soft Comp. 11, 3333–3346 (2011). doi:10.1016/j.asoc.2011.01.004

    Article  Google Scholar 

  21. Anoop M.B., Rao K.B.: Application of fuzzy sets for remaining life assessment of corrosion affected reinforced concrete bridge girders. J. Perform. Constr. Fac. 21(2), 166–171 (2007). doi:10.1061/(ASCE)0887-3828(2007)21:2(166)

    Article  Google Scholar 

  22. Zhao Z., Chen C.: Concrete bridge deterioration diagnosis using fuzzy inference system. Adv. Eng. Soft. 32(4), 317–325 (2001). doi:10.1016/S0965-9978(00)00089-2

    Article  MATH  Google Scholar 

  23. Sasmal S., Ramanjaneyulu K., Gopalakrishnan S., Lakshmanan N.: Fuzzy logic based condition rating of existing reinforced concrete bridges. J. Perform. Con. Str. Fac. 20(3), 261–273 (2006). doi:10.1061/(ASCE)0887-3828(2006)20:3(261)

    Article  Google Scholar 

  24. Neshat, M.; Adeli, A.; Sepidnam, G.; Sargolzaei, M.: Prediction of concrete mix design using adaptive neural fuzzy inference systems and fuzzy inference systems. Int. J. Adv. Manuf. Technol. Published Online 17 March 2012. (2012). doi:10.1007/s00170-012-3914-9

  25. Ji T., Lin T., Lin X.A.: Concrete mix proportion design algorithm based on artificial neural networks. Cem. Conc. Res. 36, 1399–1408 (2006). doi:10.1016/j.cemconres.2006.01.009

    Article  Google Scholar 

  26. Wong H.H.C., Kwan A.K.H.: Packing density of cementitious materials: part 1—measurement using a wet packing method. Mater. Struc. 41, 689–701 (2008). doi:10.1617/s11527-007-9274-5

    Article  Google Scholar 

  27. Mehta, K.P.: Reducing the environmental impact of concrete. Concr. Int. 23, 61–66 (2001)

  28. Mehta P.K.: Concrete technology for sustainable development. Concr. Int. 21(11), 47–53 (1999)

    Google Scholar 

  29. ASTM C109M-97.: Standard test method for compressive strength of hydraulic cement mortar. 4.01. American Society for Testing and Materials (1998)

  30. Abdel-Jawad Y.A., Abdullah W.S.: Design of maximum density aggregate grading. Constr. Build. Mater. 16, 495–508 (2002). doi:10.1016/S0950-0618(02)00032-6

    Article  Google Scholar 

  31. ASTM C136-96a.: Standard test method for sieve analysis of fine and coarse aggregates. 4.01. American Society for Testing and Materials (1998)

  32. Pofale A.D., Deo S.V.: Comparative long term study of concrete mix design procedure for fine aggregate replacement with fly ash by minimum voids method and maximum density method. KSCE J. Civi. Eng. 14(5), 759–764 (2010). doi:10.1007/s12205-010-0911-0

    Article  Google Scholar 

  33. Kwan A.K.H., Fung W.W.S.: Packing density measurement and modeling of fine aggregate and mortar. Cem. Conr. Comp. 31, 349–357 (2009). doi:10.1016/j.cemconcomp.2009.03.006

    Article  Google Scholar 

  34. Shen, S.; Yu, H.: Analysis of aggregate gradation and packing for easy estimation of HMA voids in mineral aggregate. ASCE J. Civi. Eng. 23(5) (2010). doi:10.1061/(ASCE)MT.1943-5533.0000224

  35. Brouwers H.J.H., Radix H.J.: Self-Compacting concrete: theoretical and experimental study. Ceme. Concr. Res. 35, 2116–2136 (2005). doi:10.1016/j.cemconres.2005.06.002

    Article  Google Scholar 

  36. ASTM C29-97.: Standard test method for bulk density (“unit weight”) and voids in aggregate. 4.01. American Society for Testing and Materials (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Shirzadi Javid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoddousi, P., Shirzadi Javid, A.A. & Sobhani, J. A Fuzzy System Methodology for Concrete Mixture Design Considering Maximum Packing Density and Minimum Cement Content. Arab J Sci Eng 40, 2239–2249 (2015). https://doi.org/10.1007/s13369-015-1731-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1731-9

Keywords

Navigation