Skip to main content

Advertisement

Log in

Improved Hydrogen Production from Galactose Via Immobilized Mixed Consortia

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, a combined encapsulation and entrapment immobilization strategy was employed to enhance hydrogen production from sewage sludge containing mixed microbial cultures. The results showed that the hydrogen production rate (HPR) and hydrogen yield (HY) of immobilized cells were significantly higher than that of the suspended cells. The peak HPR and HY of 0.76 L/L-d and 1.20 mol/mol galactoseadded attained with the immobilized cell system were comparable to that of the suspended cell system (HPR 0.62 L/L-d and HY 0.88 mol/mol galactoseadded, respectively). The immobilized beads were also found to have efficient hydrogen production upon reuse for more than five cycles, with galactose removal > 85 % in all cases. Soluble metabolic product analysis revealed that fermentation followed a butyrate pathway and the major metabolites produced were acetate and butyrate. The peak total energy production rate and yield were 8.6 kJ/L-d and 308 kJ/mol added, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner J.A.: Sustainable hydrogen Production. Science 305(5686), 972–974 (2004)

    Article  Google Scholar 

  2. Goyal H.B., Seal D., Saxena R.C.: Bio-fuels from thermochemical conversion of renewable resources: a review. Renew. Sustain. Energy Rev. 12(2), 504–517 (2008)

    Article  Google Scholar 

  3. Kumar G., Bakonyi P., Periyasamy S., Kim S.H., Nemestothy N., Belafi-Bako K.: Lignocellulose biohydrogen: practical challenges and recent progress. Renew. Sustain. Energy Rev. 44, 728–737 (2015)

    Article  Google Scholar 

  4. Lin C.Y., Lay C.H., Sen B., Chu C.Y., Kumar G., Chen C.C., Chang J.S.: Fermentative hydrogen production from wastewaters: a review and prognosis. Int. J. Hydrog. Energy 37(20), 15632–15642 (2012)

    Article  Google Scholar 

  5. Kumar G., Lin C.Y.: Bioconversion of de-oiled Jatropha Waste (DJW) to hydrogen and methane gas by anaerobic fermentation: influence of substrate concentration, temperature and pH. Int. J. Hydrog. Energy 38(1), 63–72 (2013)

    Article  Google Scholar 

  6. Lay C.H., Sung I.Y., Kumar G., Chu C.Y., Chen C.C., Lin C.Y.: Optimizing biohydrogen production from mushroom cultivation waste using anaerobic mixed cultures. Int. J. Hydrog. Energy 37(21), 16473–16478 (2012)

    Article  Google Scholar 

  7. Park J.H., Yoon J.J., Park H.D., Kim Y.J., Lim D.J., Kim S.-H.: Feasibility of biohydrogen production from Gelidium amansii. Int. J. Hydrog. Energy 36(21), 13997–14003 (2011)

    Article  Google Scholar 

  8. Park J.H., Hong J.Y., Jang H.C., Oh S.G., Kim S.H., Yoon J.J., Kim Y.J.: Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108, 83–88 (2012)

    Article  Google Scholar 

  9. Park J.H., Cheon H.C., Yoon J.J., Park H.D., Kim S.H.: Optimization of batch dilute-acid hydrolysis for biohydrogen production from red algal biomass. Int. J. Hydrog. Energy 38(14), 6130–6136 (2013)

    Article  Google Scholar 

  10. Sivagurunathan P., Kumar G., Sen B., Lin C.Y.: Development of a novel hybrid immobilization material (HY-IM) for fermentative biohydrogen production from beverage wastewater. J. Chin. Chem. Soc. 61(7), 827–830 (2014)

    Article  Google Scholar 

  11. Wu S.Y., Lin C.N., Chang J.S., Lee K.S., Lin P.J.: Microbial hydrogen production with immobilized sewage sludge. Biotechnol. Prog. 18(5), 921–926 (2002)

    Article  Google Scholar 

  12. Wu S.Y., Lin C.N., Chang J.S., Chang J.S.: Biohydrogen production with anaerobic sludge immobilized by ethylene-vinyl acetate copolymer. Int. J. Hydrog. Energy 30(13-14), 1375–1381 (2005)

    Article  Google Scholar 

  13. Kim J.O., Kim Y.H., Ryu J.Y., Song B.K., Kim I.H., Yeom S.H.: Immobilization methods for continuous hydrogen gas production biofilm formation versus granulation. Process Biochem. 40(3-4), 1331–1337 (2005)

    Article  Google Scholar 

  14. Hu B., Chen S.: Biological hydrogen production using chloroform-treated methanogenic granules. Appl. Biochem. Biotechnol. 148(1-3), 83–95 (2008)

    Article  Google Scholar 

  15. Blandino A., Macías M., Cantero D.: Immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochem. 36(7), 601–606 (2001)

    Article  Google Scholar 

  16. Wu S.Y., Hung C.H., Lin C.N., Chen H.W., Lee A.S., Chang J.S.: Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnol. Bioeng. 93(5), 934–946 (2006)

    Article  Google Scholar 

  17. Kumar G., Park J.H., Kim M.S., Kim D.H., Kim S.K.: Hydrogen fermentation of different galactose–glucose compositions during various hydraulic retention times (HRTs). Int. J. Hydrog. Energy 39(35), 20625–20631 (2014)

    Article  Google Scholar 

  18. Endo G., Noike T., Matsumoto T.: Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic digestion. Proc. Soc. Civ. Eng. 325(1), 61–68 (1982)

    Article  Google Scholar 

  19. APHA: Standard methods for the examination of water and wastewater, 19(ed.). APHA, New York (1995)

  20. Kumar G., Lay C.H., Chu C.Y., Wu J.H., Lee S.C., Lin C.Y.: Seed inocula for biohydrogen production from biodiesel solid residues. Int. J. Hydrog. Energy 37(20), 15489–15495 (2012)

    Article  Google Scholar 

  21. Sivagurunathan P., Sen B., Lin C.Y.: Batch fermentative hydrogen production by enriched mixed culture: Combination strategy and their microbial composition. J. BioSci. Bioeng. 117(2), 222–228 (2014)

    Article  Google Scholar 

  22. Chuang Y.S., Lay C.H., Sen B., Chen C.C., Gopalakrishnan K., Wu J.H., Lin C.S., Lin C.Y.: Biohydrogen and biomethane from water hyacinth (Eichhornia crassipes) fermentation: Effects of substrate concentration and incubation temperature. Int. J. Hydrog. Energy 36(21), 14195–14203 (2011)

    Article  Google Scholar 

  23. Fangkum A., Reungsang A.: Biohydrogen production from sugarcane bagasse hydrolysate by elephant dung: effects of initial pH and substrate concentration. Int. J. Hydrog. Energy 36(14), 8687–8696 (2011)

    Article  Google Scholar 

  24. Lay J.J., Lee Y.J., Noike T.: Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res. 33(11), 2579–2586 (1999)

    Article  Google Scholar 

  25. Lin C.Y., Chang R.C.: Fermentative hydrogen production at ambient temperature. Int. J. Hydrog. Energy 29(7), 715–720 (2004)

    Article  Google Scholar 

  26. Oh S.E., Van Ginkel S., Logan B.E.: The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ. Sci. Technol. 37(22), 5186–5190 (2003)

    Article  Google Scholar 

  27. Khanal S.K., Chen W.H., Li L., Sung S.: Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrog. Energy 29(11), 1123–1131 (2004)

    Google Scholar 

  28. Koskinen P.E.P., Kaksonen A.H., Puhakka J.A.: The relationship between instability of H 2 production and compositions of bacterial communities within a dark fermentation fluidised-bed bioreactor. Biotechnol. Bioeng. 97(4), 742–758 (2007)

    Article  Google Scholar 

  29. Sikora, A.; Błaszczyk,M.; Jurkowski,M.; Zielenkiewicz, U.: Lactic acid bacteria in hydrogen-producing consortia: on purpose or by coincidence? In: Kongo, M. (ed.) Lactic acid bacteria-R&D for food, health and livestock purposes. InTech. ISBN: 978-953-51-0955-6

  30. Sivagurunathan P., Sen B., Lin C.Y.: Overcoming propionic acid inhibition of hydrogen fermentation by temperature shift strategy. Int. J. Hydrog. Energy 39(33), 19232–19241 (2014)

    Article  Google Scholar 

  31. Lee H.S., Rittmann B.E.: Evaluation of metabolism using stoichiometry in fermentative biohydrogen. Biotechnol. Bioeng. 102(3), 749–758 (2009)

    Article  Google Scholar 

  32. Liu I.C., Whang L.M., Ren W.J., Lin P.Y.: The effect of pH on the production of biohydrogen by clostridia: Thermodynamic and metabolic considerations. Int. J. Hydrog. Energy 36(1), 439–449 (2011)

    Article  Google Scholar 

  33. Cheng H.H., Whang L.M., Wu C.W., Chung M.C.: A two-stage bioprocess for hydrogen and methane production from rice straw bioethanol residues. Bioresour. Technol. 113, 23–29 (2012)

    Article  Google Scholar 

  34. Hawkes F.R., Hussy I., Kyazze G., Dinsdale R., Hawkes D.L.: Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int. J. Hydrog. Energy 32(2), 172–184 (2007)

    Article  Google Scholar 

  35. Wang J., Wan W.: Factors influencing fermentative hydrogen production: a review. Int. J. Hydrog. Energy 34(2), 799–811 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hyoun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Sivagurunathan, P., Park, JH. et al. Improved Hydrogen Production from Galactose Via Immobilized Mixed Consortia. Arab J Sci Eng 40, 2117–2122 (2015). https://doi.org/10.1007/s13369-015-1729-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1729-3

Keywords

Navigation