Advertisement

Arabian Journal for Science and Engineering

, Volume 41, Issue 2, pp 577–590 | Cite as

Free Vibration Analysis of a Rotating Mori–Tanaka-Based Functionally Graded Beam via Differential Transformation Method

  • Farzad EbrahimiEmail author
  • Mohadese Mokhtari
Research Article - Mechanical Engineering

Abstract

In this paper, free vibration analysis of a rotating Mori–Tanaka-based functionally graded (FG) beam is investigated based on Timoshenko beam theory. The physical neutral axis position for the mentioned FG beam is determined. By using a semi-analytical differential transformation method (DTM), the governing differential equations are transformed into recurrence relations and the boundary conditions are converted to algebraic equations. The material properties of the rotating FG beam are supposed to vary across the thickness direction based on Mori–Tanaka micromechanics model. In the classical beam theory, the effects of transverse shear deformation and rotary inertia are not taken into consideration, while the Timoshenko beam model takes these effects into account. It is demonstrated that the DTM has high precision and computational efficiency in the vibration analysis of rotating FG beams. The good agreement between the results of this article and those available in the literature validated the presented approach. The detailed mathematical derivations are presented, and numerical investigations are performed, while the emphasis is placed on investigating the effect of functionally graded microstructure, mode number, slenderness ratios, rotational speed and hub radius and boundary conditions on the normalized natural frequencies of the rotating FG beam in detail. It is explicitly shown that the vibration behavior of a rotating FG beam is significantly influenced by these effects.

Keywords

Free vibration Mori–Tanaka model Functionally graded material Rotating beam Differential transformation method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yamanouchi, M.; Koizumi, M.; Hirai, M.T.; Shiota, I.: Proceedings of the First International Symposium on Functionally Gradient Materials, Sendai, Japan (1990)Google Scholar
  2. 2.
    Kurşun A., Topçu M.: Thermal stress analysis of functionally graded disc with variable thickness due to linearly increasing temperature load. Arab. J. Sci. Eng. 38(12), 3531–3549 (2013)CrossRefGoogle Scholar
  3. 3.
    Akbari Alashti R., Ahmadi S.A.: Buckling analysis of functionally graded thick cylindrical shells with variable thickness using DQM. Arab. J. Sci. Eng. 39, 8121–8133 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Akbari Alashti R., Tarahhomi M.H.: Thermo-elastic analysis of functionally graded toroidal shells. Arab. J. Sci. Eng. 39, 2127–2142 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Abdeen Mostafa A.M., Bichir S.M.: Analysis of simply supported thin FGM rectangular plate resting on fluid layer. Arab. J. Sci. Eng. 38(12), 3267–3273 (2013)CrossRefGoogle Scholar
  6. 6.
    Mukhtar F.M., Al-Gadhib A.H.: Collocation method for elastoplastic analysis of a pressurized functionally graded tube. Arab. J. Sci. Eng. 39(11), 7701–7716 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Civalek O.: Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. 26(2), 171–186 (2004)CrossRefGoogle Scholar
  8. 8.
    Kapuria S., Bhattacharyya M., Kumar A.N.: Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation. Compos. Struct. 82(3), 390–402 (2008)CrossRefGoogle Scholar
  9. 9.
    Sina S.A., Navazi H.M., Haddadpour H.: An analytical method for free vibration analysis of functionally graded beams. Mater. Des. 30(3), 741–747 (2009)CrossRefGoogle Scholar
  10. 10.
    Şimşek M.: Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nucl. Eng. Des. 240(4), 697–705 (2010)CrossRefGoogle Scholar
  11. 11.
    Ke L.L., Yang J., Kitipornchai S.: An analytical study on the nonlinear vibration of functionally graded beams. Meccanica 45(6), 743–752 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Pradhan K.K., Chakraverty S.: Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Compos. Part B Eng. 51, 175–184 (2013)CrossRefGoogle Scholar
  13. 13.
    Gibson L.J., Ashby M.F., Karam G.N., Wegst U., Shercliff H.R.: The mechanical properties of natural materials. II. Microstructures for mechanical efficiency. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 450, 141–162 (1995)CrossRefGoogle Scholar
  14. 14.
    Mori T., Tanaka K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21(5), 571–574 (1973)CrossRefGoogle Scholar
  15. 15.
    Hill R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)CrossRefGoogle Scholar
  16. 16.
    Reddy J.N., Chin C.D.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stress. 21(6), 593–626 (1998)CrossRefGoogle Scholar
  17. 17.
    Sundararajan N., Prakash T., Ganapathi M.: Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments. Finite Elem. Anal. Des. 42(2), 152–168 (2005)CrossRefGoogle Scholar
  18. 18.
    Chehel Amirani M., Khalili S.M.R., Nemati N.: Free vibration analysis of sandwich beam with FG core using the element free Galerkin method. Compos. Struct. 90(3), 373–379 (2009)CrossRefGoogle Scholar
  19. 19.
    Shen H.S., Wang Z.X.: Assessment of Voigt and Mori–Tanaka models for vibration analysis of functionally graded plates. Compos. Struct. 94(7), 2197–2208 (2012)CrossRefGoogle Scholar
  20. 20.
    Bui, T.Q.; Khosravifard, A.; Zhang, C.; Hematiyan, M.R.; Golub, M.V.: Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method. Eng. Struct. 47, 90–104 (2013)Google Scholar
  21. 21.
    Akgöz B., Civalek O.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mechanica 224(9), 2185–2201 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Akgöz B., Civalek O.: Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Compos. Struct. 98, 314–322 (2013)CrossRefGoogle Scholar
  23. 23.
    Malik M., Dang H.H.: Vibration analysis of continuous systems by differential transformation. Appl. Math. Comput. 96(1), 17–26 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Ho S.H., Chen C.O.K.: Free transverse vibration of an axially loaded non-uniform spinning twisted Timoshenko beam using differential transform. Int. J. Mech. Sci. 48(11), 1323–1331 (2006)zbMATHCrossRefGoogle Scholar
  25. 25.
    Kaya M.O.: Free vibration analysis of a rotating Timoshenko beam by differential transform method. Aircr. Eng. Aerosp. Technol. 78(3), 194–203 (2006)CrossRefGoogle Scholar
  26. 26.
    Mei C.: Application of differential transformation technique to free vibration analysis of a centrifugally stiffened beam. Comput. Struct. 86(11), 1280–1284 (2008)CrossRefGoogle Scholar
  27. 27.
    Giurgiutiu V., Stafford R.O.: Semi-analytic methods for frequencies and mode shapes of rotor blades. Vertica 1(4), 291–306 (1977)Google Scholar
  28. 28.
    Hodges D.Y., Rutkowski M.Y.: Free-vibration analysis of rotating beams by a variable-order finite-element method. AIAA J. 19(11), 1459–1466 (1981)zbMATHCrossRefGoogle Scholar
  29. 29.
    Du H., Lim M.K., Liew K.M.: A power series solution for vibration of a rotating Timoshenko beam. J. Sound Vib. 175(4), 505–523 (1994)zbMATHCrossRefGoogle Scholar
  30. 30.
    Reddy J.N.: On the dynamic behaviour of the Timoshenko beam finite elements. Sadhana 24(3), 175–198 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Banerjee J.R.: Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. J. Sound Vib. 233(5), 857–875 (2000)zbMATHCrossRefGoogle Scholar
  32. 32.
    Civalek O., Kiracioglu O.: Free vibration analysis of Timoshenko beams by DSC method. Int. J. Numer. Methods Biomed. Eng. 26(12), 1890–1898 (2010)zbMATHGoogle Scholar
  33. 33.
    Li X.-F.: A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. J. Sound Vib. 318(4), 1210–1229 (2008)CrossRefGoogle Scholar
  34. 34.
    Mohanty S.C., Dash R.R., Rout T.: Free vibration of a functionally graded rotating Timoshenko beam using FEM. Adv. Struct. Eng. 16(2), 405–418 (2013)CrossRefGoogle Scholar
  35. 35.
    Shahba A., Attarnejad R., Zarrinzadeh H.: Free vibration analysis of centrifugally stiffened tapered functionally graded beams. Mech. Adv. Mater. Struct. 20(5), 331–338 (2013)CrossRefGoogle Scholar
  36. 36.
    Rajasekaran S.: Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods. Appl. Math. Model. 37(6), 4440–4463 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Li L., Zhang D.G., Zhu W.D.: Free vibration analysis of a rotating hub–functionally graded material beam system with the dynamic stiffening effect. J. Sound Vib. 333(5), 1526–1541 (2014)CrossRefGoogle Scholar
  38. 38.
    Zhang D.G., Zhou Y.H.: A theoretical analysis of FGM thin plates based on physical neutral surface. Comput. Mater. Sci. 44(2), 716–720 (2008)CrossRefGoogle Scholar
  39. 39.
    Hodges, D.H.; Dowell, E.H.: Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. Natl. Aeronaut. Space Adm. (1974)Google Scholar
  40. 40.
    Banerjee J.R.: Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams. J. Sound Vib. 247(1), 97–115 (2001)CrossRefGoogle Scholar
  41. 41.
    Chen C.K., Ho S.H.: Application of differential transformation to eigenvalue problems. Appl. Math. Comput. 79(2), 173–188 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Wattanasakulpong N., Mao Q.: Dynamic response of Timoshenko functionally graded beams with classical and non-classical boundary conditions using Chebyshev collocation method. Compos. Struct. 119, 346–354 (2015)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2015

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringImam Khomeini International UniversityQazvinIran

Personalised recommendations